IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1813.html
   My bibliography  Save this paper

Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests

Author

Listed:

Abstract

This paper provides a set of results that can be used to establish the asymptotic size and/or similarity in a uniform sense of confidence sets and tests. The results are generic in that they can be applied to a broad range of problems. They are most useful in scenarios where the pointwise asymptotic distribution of a test statistic has a discontinuity in its limit distribution. The results are illustrated in three examples. These are: (i) the conditional likelihood ratio test of Moreira (2003) for linear instrumental variables models with instruments that may be weak, extended to the case of heteroskedastic errors; (ii) the grid bootstrap confidence interval of Hansen (1999) for the sum of the AR coefficients in a k-th order autoregressive model with unknown innovation distribution, and (iii) the standard quasi-likelihood ratio test in a nonlinear regression model where identification is lost when the coefficient on the nonlinear regressor is zero.

Suggested Citation

  • Donald W.K. Andrews & Xu Cheng & Patrik Guggenberger, 2011. "Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests," Cowles Foundation Discussion Papers 1813, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1813
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d18/d1813.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    2. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2008. "Efficient two-sided nonsimilar invariant tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 146(2), pages 241-254, October.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    5. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    6. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    7. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis & Linchun Chen, 2012. "On the Asymptotic Sizes of Subset Anderson–Rubin and Lagrange Multiplier Tests in Linear Instrumental Variables Regression," Econometrica, Econometric Society, vol. 80(6), pages 2649-2666, November.
    8. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    9. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    10. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    11. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    12. Donald W. K. Andrews & Vadim Marmer & Zhengfei Yu, 2019. "On optimal inference in the linear IV model," Quantitative Economics, Econometric Society, vol. 10(2), pages 457-485, May.
    13. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    14. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    15. Sukjin Han & Adam McCloskey, 2019. "Estimation and inference with a (nearly) singular Jacobian," Quantitative Economics, Econometric Society, vol. 10(3), pages 1019-1068, July.
    16. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    17. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2019. "On uniform asymptotic risk of averaging GMM estimators," Quantitative Economics, Econometric Society, vol. 10(3), pages 931-979, July.
    18. Donna Feir & Thomas Lemieux & Vadim Marmer, 2016. "Weak Identification in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-196, April.
    19. Andrews, Donald W.K. & Guggenberger, Patrik, 2017. "Asymptotic Size Of Kleibergen’S Lm And Conditional Lr Tests For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1046-1080, October.
    20. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    21. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    22. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    23. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    24. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2019. "A more powerful subvector Anderson Rubin test in linear instrumental variables regression," Quantitative Economics, Econometric Society, vol. 10(2), pages 487-526, May.
    25. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    26. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(2), pages 387-421, April.
    27. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    28. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    29. Elliott, Graham & Stock, James H., 2001. "Confidence intervals for autoregressive coefficients near one," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 155-181, July.
    30. Anna Mikusheva & Brian P. Poi, 2006. "Tests and confidence sets with correct size when instruments are potentially weak," Stata Journal, StataCorp LP, vol. 6(3), pages 335-347, September.
    31. Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978, Cowles Foundation for Research in Economics, Yale University.
    32. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    33. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    34. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    35. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    36. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    37. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators," Journal of Econometrics, Elsevier, vol. 152(1), pages 19-27, September.
    38. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(2), pages 287-333, April.
    39. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    40. Andrews, Donald W K, 2002. "Generalized Method of Moments Estimation When a Parameter Is on a Boundary," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 530-544, October.
    41. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
    42. Hannes Leeb, 2006. "The distribution of a linear predictor after model selection: Unconditional finite-sample distributions and asymptotic approximations," Papers math/0611186, arXiv.org.
    43. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
    44. Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(3), pages 537-549, June.
    45. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    46. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    47. Donald W. K. Andrews & Patrik Guggenberger, 2019. "Identification‐ and singularity‐robust inference for moment condition models," Quantitative Economics, Econometric Society, vol. 10(4), pages 1703-1746, November.
    48. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    49. Isaiah Andrews & Anna Mikusheva, 2015. "Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 6(1), pages 123-152, March.
    50. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    51. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    52. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    53. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    2. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    3. Gregory Cox, 2020. "Weak Identification with Bounds in a Class of Minimum Distance Models," Papers 2012.11222, arXiv.org.
    4. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    5. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    6. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    7. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics Working Papers 2020-05, University of Adelaide, School of Economics.
    8. Donald W.K. Andrews & Patrik Guggenberger, 2007. "Hybrid and Size-Corrected Subsample Methods," Cowles Foundation Discussion Papers 1606, Cowles Foundation for Research in Economics, Yale University.
    9. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    10. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    11. Tetsuya Kaji, 2019. "Theory of Weak Identification in Semiparametric Models," Papers 1908.10478, arXiv.org, revised Aug 2020.
    12. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2021. "A Powerful Subvector Anderson Rubin Test in Linear Instrumental Variables Regression with Conditional Heteroskedasticity," Papers 2103.11371, arXiv.org, revised May 2021.
    13. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(2), pages 287-333, April.
    14. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    15. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    16. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    17. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    18. Jui-Chung Yang & Ke-Li Xu, 2013. "Estimation and Inference under Weak Identi cation and Persistence: An Application on Forecast-Based Monetary Policy Reaction Function," 2013 Papers pya307, Job Market Papers.
    19. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    20. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.

    More about this item

    Keywords

    Asymptotically similar; Asymptotic size; Autoregressive model; Confidence interval; Nonlinear regression; Test; Weak instruments;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1813. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Regan (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.