IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1813.html
   My bibliography  Save this paper

Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests

Author

Listed:

Abstract

This paper provides a set of results that can be used to establish the asymptotic size and/or similarity in a uniform sense of confidence sets and tests. The results are generic in that they can be applied to a broad range of problems. They are most useful in scenarios where the pointwise asymptotic distribution of a test statistic has a discontinuity in its limit distribution. The results are illustrated in three examples. These are: (i) the conditional likelihood ratio test of Moreira (2003) for linear instrumental variables models with instruments that may be weak, extended to the case of heteroskedastic errors; (ii) the grid bootstrap confidence interval of Hansen (1999) for the sum of the AR coefficients in a k-th order autoregressive model with unknown innovation distribution, and (iii) the standard quasi-likelihood ratio test in a nonlinear regression model where identification is lost when the coefficient on the nonlinear regressor is zero.

Suggested Citation

  • Donald W.K. Andrews & Xu Cheng & Patrik Guggenberger, 2011. "Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests," Cowles Foundation Discussion Papers 1813, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1813
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d18/d1813.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    2. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2008. "Efficient two-sided nonsimilar invariant tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 146(2), pages 241-254, October.
    3. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    4. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    5. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    6. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    7. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    8. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(02), pages 426-468, April.
    9. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
    10. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    11. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(02), pages 387-421, April.
    12. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    13. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    14. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    15. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators," Journal of Econometrics, Elsevier, vol. 152(1), pages 19-27, September.
    16. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    17. Andrews, Donald W K, 2002. "Generalized Method of Moments Estimation When a Parameter Is on a Boundary," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 530-544, October.
    18. Hannes Leeb, 2006. "The distribution of a linear predictor after model selection: Unconditional finite-sample distributions and asymptotic approximations," Papers math/0611186, arXiv.org.
    19. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
    20. Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(03), pages 537-549, June.
    21. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    22. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    23. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    24. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    25. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Heng & Fan, Yanqin & Liu, Ruixuan, 2016. "Inference for the correlation coefficient between potential outcomes in the Gaussian switching regime model," Journal of Econometrics, Elsevier, vol. 195(2), pages 255-270.
    2. Moreira, Humberto Ataíde & Moreira, Marcelo J., 2015. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 764, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
    3. repec:eee:econom:v:200:y:2017:i:1:p:17-35 is not listed on IDEAS
    4. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    5. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(02), pages 287-333, April.
    6. Chen, Xiaohong & Ponomareva, Maria & Tamer, Elie, 2014. "Likelihood inference in some finite mixture models," Journal of Econometrics, Elsevier, vol. 182(1), pages 87-99.
    7. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    8. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Xiaoxia Shi, 2015. "A nondegenerate Vuong test," Quantitative Economics, Econometric Society, vol. 6(1), pages 85-121, March.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    11. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    12. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    13. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    14. Donald W.K. Andrews, 2017. "Identification-Robust Subvector Inference," Cowles Foundation Discussion Papers 3005, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
    15. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2013. "Uniform Asymptotic Risk of Averaging GMM Estimator Robust to Misspecification, Second Version," PIER Working Paper Archive 15-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    16. Jui-Chung Yang & Ke-Li Xu, 2013. "Estimation and Inference under Weak Identi cation and Persistence: An Application on Forecast-Based Monetary Policy Reaction Function," 2013 Papers pya307, Job Market Papers.

    More about this item

    Keywords

    Asymptotically similar; Asymptotic size; Autoregressive model; Confidence interval; Nonlinear regression; Test; Weak instruments;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1813. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.