IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1475.html
   My bibliography  Save this paper

Uniform Limit Theory for Stationary Autoregression

Author

Abstract

First order autoregression is shown to satisfy a limit theory which is uniform over stationary values of the autoregressive coefficient rho = rho_{n} in [0,1) provided (1 - rho_{n})n approaches infinity. This extends existing Gaussian limit theory by allowing for values of stationary rho that include neighbourhoods of unity provided they are wider than O(n^{1}), even by a slowly varying factor. Rates of convergence depend on rho and are at least squareroot of squareroot of n but less than n. Only second moments are assumed, as in the case of stationary autoregression with fixed rho.

Suggested Citation

  • Liudas Giraitis & Peter C.B. Phillips, 2004. "Uniform Limit Theory for Stationary Autoregression," Cowles Foundation Discussion Papers 1475, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1475 Note: CFP 1166
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d14/d1475.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    2. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    2. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(04), pages 888-947, August.
    3. repec:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0712-0 is not listed on IDEAS
    4. Peter C.B. Phillips & Tassos Magadalinos, 2005. "Limit Theory for Moderate Deviations from a Unit Root under Weak Dependence," Cowles Foundation Discussion Papers 1517, Cowles Foundation for Research in Economics, Yale University.
    5. Donald W. K. Andrews & Patrik Guggenberger, 2008. "Asymptotics for stationary very nearly unit root processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 203-212, January.
    6. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    7. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    8. Patrik Guggenberger, "undated". "Asymptotics for Stationary Very Nearly Unit Root Processes (joint with D.W.K. Andrews), this version November 2006," UCLA Economics Online Papers 402, UCLA Department of Economics.
    9. Donald W.K. Andrews & Xu Cheng & Patrik Guggenberger, 2011. "Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests," Cowles Foundation Discussion Papers 1813, Cowles Foundation for Research in Economics, Yale University.
    10. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    11. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    12. Phillips, Peter C.B. & Magdalinos, Tassos & Giraitis, Liudas, 2010. "Smoothing local-to-moderate unit root theory," Journal of Econometrics, Elsevier, vol. 158(2), pages 274-279, October.
    13. Sun, Yixiao, 2014. "Fixed-smoothing Asymptotics and Asymptotic F and t Tests in the Presence of Strong Autocorrelation," University of California at San Diego, Economics Working Paper Series qt8479f4s2, Department of Economics, UC San Diego.
    14. Westerlund J. & Smeekes S., 2013. "Robust block bootstrap panel predictability tests," Research Memorandum 060, Maastricht University, Graduate School of Business and Economics (GSBE).
    15. Tassos Magdalinos, 2005. "On the inconsistency of the unrestricted estimator of the information matrix near a unit root," Discussion Papers 06/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    16. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    17. Kurozumi, Eiji & Hayakawa, Kazuhiko, 2009. "Asymptotic properties of the efficient estimators for cointegrating regression models with serially dependent errors," Journal of Econometrics, Elsevier, vol. 149(2), pages 118-135, April.
    18. Offer Lieberman & Peter C.B. Phillips, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 3013, Cowles Foundation for Research in Economics, Yale University.
    19. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    20. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    21. Tassos Magdalinos, 2008. "Mildly explosive autoregression under weak and strong dependence," Discussion Papers 08/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    22. Jui-Chung Yang & Ke-Li Xu, 2013. "Estimation and Inference under Weak Identi cation and Persistence: An Application on Forecast-Based Monetary Policy Reaction Function," 2013 Papers pya307, Job Market Papers.
    23. YABE, Ryota, 2014. "Asymptotic Distribution of the Conditional Sum of Squares Estimator Under Moderate Deviation From a Unit Root in MA(1)," Discussion Papers 2014-19, Graduate School of Economics, Hitotsubashi University.
    24. Bailey, N. & Giraitis, L., 2013. "Weak convergence in the near unit root setting," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1411-1415.
    25. Magdalinos, Tassos, 2012. "Mildly explosive autoregression under weak and strong dependence," Journal of Econometrics, Elsevier, vol. 169(2), pages 179-187.

    More about this item

    Keywords

    Autoregression; Gaussian limit theory; local to unity; uniform limit;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1475. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.