IDEAS home Printed from
   My bibliography  Save this paper

Identification- and Singularity-Robust Inference for Moment Condition




This paper introduces two new identification- and singularity-robust conditional quasi-likelihood ratio (SR-CQLR) tests and a new identification- and singularity-robust Anderson and Rubin (1949) (SR-AR) test for linear and nonlinear moment condition models. The paper shows that the tests have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak conditions. For two of the three tests, all that is required is that the moment functions and their derivatives have 2 + gamma bounded moments for some gamma > 0 in i.i.d. scenarios. In stationary strong mixing time series cases, the same condition suffices, but the magnitude of gamma is related to the magnitude of the strong mixing numbers. For the third test, slightly stronger moment conditions and a (standard, though restrictive) multiplicative structure on the moment functions are imposed. For all three tests, no conditions are placed on the expected Jacobian of the moment functions, on the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions. The two SR-CQLR tests are shown to be asymptotically efficient in a GMM sense under strong and semi-strong identification (for all k greater than or equal to p; where k and p are the numbers of moment conditions and parameters, respectively). The two SR-CQLR tests reduce asymptotically to Moreira's CLR test when p = 1 in the homoskedastic linear IV model. The first SR-CQLR test, which relies on the multiplicative structure on the moment functions, also does so for p greater than or equal to 2

Suggested Citation

  • Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1978
    Note: Includes supplemental material

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
    2. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    3. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    4. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    5. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    6. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Admissible Invariant Similar Tests For Instrumental Variables Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 806-818, June.
    7. Moreira, Humberto Ataíde & Moreira, Marcelo J., 2013. "Contributions to the Theory of Optimal Tests," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 747, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
    Full references (including those not matched with items on IDEAS)

    More about this item


    Asymptotics; Conditional likelihood ratio test; Confidence set; Identification; Inference; Moment conditions; Robust; Singular variance; Test; Weak identification; Weak instruments;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1978. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.