IDEAS home Printed from https://ideas.repec.org/p/udb/wpaper/uwec-2004-03-fc.html
   My bibliography  Save this paper

The Zero-Information-Limit Condition and Spurious Inference in Weakly Identified Models

Author

Listed:
  • Charles Nelson
  • Richard Startz

Abstract

The fact that weak instruments lead to spurious inference is now widely recognized. In this paper we ask whether spurious inference occurs more generally in weakly identified models. To distinguish between models where spurious inference will occur from those where it does not, we introduce the Zero-Information-Limit-Condition (ZILC). When ZILC holds, the information or precision of parameter estimates is overestimated. We discuss how ZILC applies to models encountered in practice and show that spurious inference does occur when ZILC holds.

Suggested Citation

  • Charles Nelson & Richard Startz, 2004. "The Zero-Information-Limit Condition and Spurious Inference in Weakly Identified Models," Working Papers UWEC-2004-03-FC, University of Washington, Department of Economics.
  • Handle: RePEc:udb:wpaper:uwec-2004-03-fc
    as

    Download full text from publisher

    File URL: http://www.econ.washington.edu/user/startz/Working_Papers/ZILCH.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kim, Chang-Jin & Nelson, Charles R, 1999. "Friedman's Plucking Model of Business Fluctuations: Tests and Estimates of Permanent and Transitory Components," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(3), pages 317-334, August.
    2. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    3. Martin D. Evans & Karen K. Lewis, 1992. "Trends in Expected Returns in Currency and Bond Markets," Working Papers 92-20, New York University, Leonard N. Stern School of Business, Department of Economics.
    4. Kim, Chang-Jin & Nelson, Charles R, 2001. "A Bayesian Approach to Testing for Markov-Switching in Univariate and Dynamic Factor Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 989-1013, November.
    5. Perron, P., 1987. "The Great Crash, the Oil Prices and the Unit Root Hypothesis," Cahiers de recherche 8749, Universite de Montreal, Departement de sciences economiques.
    6. Kim, Chang-Jin & Piger, Jeremy, 2002. "Common stochastic trends, common cycles, and asymmetry in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1189-1211, September.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. John H. Cochrane, 1994. "Permanent and Transitory Components of GNP and Stock Prices," The Quarterly Journal of Economics, Oxford University Press, vol. 109(1), pages 241-265.
    9. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    10. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64 Elsevier.
    11. Sichel, Daniel E, 1994. "Inventories and the Three Phases of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 269-277, July.
    12. Wynne, Mark A. & Balke, Nathan S., 1992. "Are deep recessions followed by strong recoveries?," Economics Letters, Elsevier, vol. 39(2), pages 183-189, June.
    13. Cooper, Russell, 1994. "Equilibrium Selection in Imperfectly Competitive Economies with Multiple Equilibria," Economic Journal, Royal Economic Society, vol. 104(426), pages 1106-1122, September.
    14. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    15. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    16. Startz, Richard, 1998. "Growth States and Shocks," Journal of Economic Growth, Springer, vol. 3(3), pages 203-215, September.
    17. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    18. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    19. Acemoglu, Daron & Scott, Andrew, 1997. "Asymmetric business cycles: Theory and time-series evidence," Journal of Monetary Economics, Elsevier, vol. 40(3), pages 501-533, December.
    20. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    21. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    22. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    23. Cogley, Timothy, 2005. "How fast can the new economy grow? A Bayesian analysis of the evolution of trend growth," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 179-207, June.
    24. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    25. Friedman, Milton, 1993. "The "Plucking Model" of Business Fluctuations Revisited," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 171-177, April.
    26. Koop, Gary & Potter, Simon M., 1998. "Bayes factors and nonlinearity: Evidence from economic time series1," Journal of Econometrics, Elsevier, vol. 88(2), pages 251-281, November.
    27. Chang-Jin Kim & Christian J. Murray, 2002. "Permanent and transitory components of recessions," Empirical Economics, Springer, vol. 27(2), pages 163-183.
    28. Howitt, Peter & McAfee, R Preston, 1992. "Animal Spirits," American Economic Review, American Economic Association, pages 493-507.
    29. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    30. Balke, Nathan S. & Wynne, Mark A., 1995. "Are deep recessions followed by strong recoveries? Results for the G-7 countries," Working Papers 9509, Federal Reserve Bank of Dallas.
    31. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    32. Fama, Eugene F., 1992. "Transitory variation in investment and output," Journal of Monetary Economics, Elsevier, vol. 30(3), pages 467-480, December.
    33. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 395-432.
    34. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    2. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Jun Ma & Charles R. Nelson, 2008. "Valid Inference for a Class of Models Where Standard Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved Components," Working Papers UWEC-2008-06-R, University of Washington, Department of Economics, revised Sep 2008.
    4. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
    5. Cogley, Timothy & Startz, Richard, 2012. "Robust Estimation of ARMA Models with Near Root Cancellation," University of California at Santa Barbara, Economics Working Paper Series qt0cw056qz, Department of Economics, UC Santa Barbara.
    6. Juan Urquiza, 2011. "Income Asymmetries and the Permanent Income Hypothesis," Documentos de Trabajo 409, Instituto de Economia. Pontificia Universidad Católica de Chile..
    7. Christian Murray & Juan Urquiza, 2017. "Do Estimated Taylor Rules Suffer from Weak Identification?," Working Papers 2017-274-09, Department of Economics, University of Houston.
    8. Daisuke Nagakura & Masahito Kobayashi, 2009. "Testing The Sequential Logit Model Against The Nested Logit Model," The Japanese Economic Review, Japanese Economic Association, vol. 60(3), pages 345-361.
    9. Soloschenko, Max & Weber, Enzo, 2014. "Capturing the Interaction of Trend, Cycle, Expectations and Risk Premia in the US Term Structure," University of Regensburg Working Papers in Business, Economics and Management Information Systems 475, University of Regensburg, Department of Economics.
    10. Trypsteen, Steven, 2017. "The growth-volatility nexus: New evidence from an augmented GARCH-M model," Economic Modelling, Elsevier, vol. 63(C), pages 15-25.
    11. Kishor, N. Kundan & Marfatia, Hardik A., 2013. "The time-varying response of foreign stock markets to U.S. monetary policy surprises: Evidence from the Federal funds futures market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 1-24.
    12. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    13. Morley, James & Piger, Jeremy, 2008. "Trend/cycle decomposition of regime-switching processes," Journal of Econometrics, Elsevier, vol. 146(2), pages 220-226, October.
    14. Soloschenko, Max & Weber, Enzo, 2012. "Trend-Cycle Interactions and the Subprime Crisis: Analysis of US and Canadian Output," University of Regensburg Working Papers in Business, Economics and Management Information Systems 470, University of Regensburg, Department of Economics.
    15. Steven Trypsteen, "undated". "The Importance of a Time-Varying Variance and Cross-Country Interactions in Forecast Models," Discussion Papers 2014/15, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    16. Ma, Jun & Wohar, Mark E., 2014. "Determining what drives stock returns: Proper inference is crucial: Evidence from the UK," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 371-390.
    17. Guerron-Quintana, Pablo A. & Inoue, Atsushi & Kilian, Lutz, 2009. "Frequentist Inference in Weakly Identified DSGE Models," CEPR Discussion Papers 7447, C.E.P.R. Discussion Papers.
    18. Islas C., Alejandro & Cortez, Willy Walter, 2013. "An assessment of the dynamics between the permanent and transitory components of Mexico's output and unemployment," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2004-03-fc. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt). General contact details of provider: http://edirc.repec.org/data/deuwaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.