IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/104.html
   My bibliography  Save this paper

Initial Conditions and Moment Restrictions in Dynamic Panel Data Models

Author

Listed:
  • Blundell, R.
  • Bond, S.

Abstract

In this paper we consider estimation of the autoregressive error components model. When the autoregressive parameter is moderately large and the number of time series observations is moderately small, the usual Generalised Methods of Moments (GMM) estimator obtained after first differencing has been found to be poorly behaved. Here we consider alternative linear estimators that are designed to improve the properties of the standard first-differenced GMM estimator. We consider two approaches to estimation. The first approach extends the model by adding the observed initial values as an extra regressor. This allows consistent estimates to be obtained by error-components GLS. This estimator is shown to be equivalent to the optimal GMM estimator for the normal homoskedastic error components model. The second approach considers a mild restriction on the initial condition process under which lagged differences in the dependent variable can be used to construct linear moment conditions in the levels equations. The complete set of moment conditions can then be exploited by a linear GMM estimator in a system of first-differenced and levels equations, rendering the non-linear moment conditions redundant for estimation. This estimator is strictly more efficient than non-linear GMM when the additional restriction is valid. Monte Carlo simulations are reported which demonstrate the dramatic improvement in performance of the proposed estimators compared to the usual first-differenced GMM estimator, especially for high values of the autoregressive parameter.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abst
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Blundell, R. & Bond, S., 1995. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models," Economics Papers 104, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:104
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alok Bhargava & J. D. Sargan, 2006. "Estimating Dynamic Random Effects Models From Panel Data Covering Short Time Periods," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 1, pages 3-27, World Scientific Publishing Co. Pte. Ltd..
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Prucha, Ingmar R, 1984. "On the Asymptotic Efficiency of Feasible Aitken Estimators for Seemingly Unrelated Regression Models with Error Components," Econometrica, Econometric Society, vol. 52(1), pages 203-207, January.
    4. Alonso-Borrego, Cesar & Arellano, Manuel, 1999. "Symmetrically Normalized Instrumental-Variable Estimation Using Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 36-49, January.
    5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    6. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    7. Crepon, Bruno & Kramarz, Francis & Trognon, Alain, 1997. "Parameters of interest, nuisance parameters and orthogonality conditions An application to autoregressive error component models," Journal of Econometrics, Elsevier, vol. 82(1), pages 135-156.
    8. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    9. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    10. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    11. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    12. Sevestre, P. & Trognon, A., 1985. "A note on autoregressive error components models," Journal of Econometrics, Elsevier, vol. 28(2), pages 231-245, May.
    13. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    14. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Binder & Cheng Hsiao & M. Hashem Pesaran, 2000. "Estimation and Inference In Short Panel Vector Autoregressions with Unit Roots And Cointegration," CESifo Working Paper Series 374, CESifo.
    2. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    3. Bond, Stephen Roy & Hoeffler, Anke & Temple, Jonathan, 2001. "GMM Estimation of Empirical Growth Models," CEPR Discussion Papers 3048, C.E.P.R. Discussion Papers.
    4. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    5. Osvaldo Lagares, 2016. "Capital, Economic Growth and Relative Income Differences in Latin America," Discussion Papers 16/03, Department of Economics, University of York.
    6. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    7. Erik Biørn, 2000. "Panel Data With Measurement Errors: Instrumental Variables And Gmm Procedures Combining Levels And Differences," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 391-424.
    8. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    9. Hahn, Jinyong & Hausman, Jerry & Kuersteiner, Guido, 2007. "Long difference instrumental variables estimation for dynamic panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 574-617, October.
    10. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    11. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    12. Yoshitsugu Kitazawa, 2003. "Dynamic Panel Data Model and Moment Generating Function," Discussion Papers 13, Kyushu Sangyo University, Faculty of Economics.
    13. Erik Biørn, 2002. "Handling the measurement error problem by means of panel data: Moment methods applied on firm data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B6-1, International Conferences on Panel Data.
    14. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    15. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    16. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    17. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    18. Rahman, Mizanur, 2008. "The Impact of a Common Currency on East Asian Production Networks and China’s Exports Behavior," MPRA Paper 13931, University Library of Munich, Germany.
    19. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    20. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.

    More about this item

    Keywords

    EVALUATION; TIME SERIES; ECONOMIC MODELS;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.