IDEAS home Printed from https://ideas.repec.org/p/udb/wpaper/uwec-2008-26.html
   My bibliography  Save this paper

A new method of projection-based inference in GMM with weakly identified nuisance parameters

Author

Listed:
  • Saraswata Chaudhuri

    (Department of Economics, University of North Carolina Chapel Hill)

  • Eric Zivot

    (Department of Economic, University of Washington)

Abstract

Projection-based methods of inference on subsets of parameters are useful for obtaining tests that do not over-reject the true parameter values. However, they are also often criticized for being conservative. We show that the usual method of pro jection can be modifed to obtain tests that are as powerful as the conventional tests for subsets of parameters. Like the usual projection-based methods, one can always put an upper bound to the rate at which the new method over-rejects the true value of the parameters of interest. The new method is described in the context of GMM with possibly weakly identifed parameters.

Suggested Citation

  • Saraswata Chaudhuri & Eric Zivot, 2008. "A new method of projection-based inference in GMM with weakly identified nuisance parameters," Working Papers UWEC-2008-26, University of Washington, Department of Economics.
  • Handle: RePEc:udb:wpaper:uwec-2008-26
    as

    Download full text from publisher

    File URL: http://faculty.washington.edu/ezivot/research/newScoreTestPaper.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
    4. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    5. Saraswata Chaudhuri & Thomas Richardson & James Robins & Eric Zivot, 2007. "Split-Sample Score Tests in Linear Instrumental Variables Regression," Working Papers UWEC-2007-10, University of Washington, Department of Economics.
    6. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    7. Andrews, Donald W.K., 1986. "Empirical process methods in econometrics," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 37, pages 2247-2294 Elsevier.
    8. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    9. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
    10. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    11. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    12. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    13. Chaudhuri, Saraswata & Richardson, Thomas & Robins, James & Zivot, Eric, 2010. "A New Projection-Type Split-Sample Score Test In Linear Instrumental Variables Regression," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1820-1837, December.
    14. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    15. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    16. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    17. Moon, Hyungsik Roger & Schorfheide, Frank, 2009. "Estimation with overidentifying inequality moment conditions," Journal of Econometrics, Elsevier, vol. 153(2), pages 136-154, December.
    18. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
    19. Eric Zivot & Saraswata Chaudhuri, 2009. "A Comment on Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Working Papers UWEC-2008-23-P, University of Washington, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    2. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(06), pages 1192-1228, December.
    3. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 29(1), pages 117-131.
    4. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," The School of Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    5. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "On the precision of Calvo parameter estimates in structural NKPC models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1582-1595, September.
    7. Adam McCloskey, 2012. "Bonferroni-Based Size-Correction for Nonstandard Testing Problems," Working Papers 2012-16, Brown University, Department of Economics.
    8. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    9. Bertille Antoine & Eric Renault, 2012. "Testing Identification Strength," Discussion Papers dp12-17, Department of Economics, Simon Fraser University, revised Jan 2017.
    10. repec:eee:econom:v:200:y:2017:i:1:p:17-35 is not listed on IDEAS
    11. Guerron-Quintana, Pablo A. & Inoue, Atsushi & Kilian, Lutz, 2009. "Frequentist Inference in Weakly Identified DSGE Models," CEPR Discussion Papers 7447, C.E.P.R. Discussion Papers.
    12. Noud P.A. van Giersbergen, 2011. "Bootstrapping Subset Test Statistics in IV Regression," UvA-Econometrics Working Papers 11-08, Universiteit van Amsterdam, Dept. of Econometrics.
    13. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    14. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2008-26. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt). General contact details of provider: http://edirc.repec.org/data/deuwaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.