IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A new method of projection-based inference in GMM with weakly identified nuisance parameters

  • Saraswata Chaudhuri

    (Department of Economics, University of North Carolina Chapel Hill)

  • Eric Zivot

    (Department of Economic, University of Washington)

Projection-based methods of inference on subsets of parameters are useful for obtaining tests that do not over-reject the true parameter values. However, they are also often criticized for being conservative. We show that the usual method of pro jection can be modifed to obtain tests that are as powerful as the conventional tests for subsets of parameters. Like the usual projection-based methods, one can always put an upper bound to the rate at which the new method over-rejects the true value of the parameters of interest. The new method is described in the context of GMM with possibly weakly identifed parameters.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://faculty.washington.edu/ezivot/research/newScoreTestPaper.pdf
Download Restriction: no

Paper provided by University of Washington, Department of Economics in its series Working Papers with number UWEC-2008-26.

as
in new window

Length:
Date of creation: Dec 2008
Date of revision:
Handle: RePEc:udb:wpaper:uwec-2008-26
Contact details of provider: Postal: Box 353330, Seattle, WA 98193-3330
Web page: http://www.econ.washington.edu/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Saraswata Chaudhuri & Thomas Richardson & James Robins & Eric Zivot, 2007. "Split-Sample Score Tests in Linear Instrumental Variables Regression," Working Papers UWEC-2007-10, University of Washington, Department of Economics.
  2. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
  3. Eric Zivot & Saraswata Chaudhuri, 2009. "A Comment on Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Working Papers UWEC-2008-23-P, University of Washington, Department of Economics.
  4. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-87, October.
  5. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
  6. Donald W.K. Andrews, 1993. "Empirical Process Methods in Econometrics," Cowles Foundation Discussion Papers 1059, Cowles Foundation for Research in Economics, Yale University.
  7. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  8. DUFOUR, Jean-Marie & TAAMOUTI, Mohamed, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Cahiers de recherche 08-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  9. Chaudhuri, Saraswata & Richardson, Thomas & Robins, James & Zivot, Eric, 2010. "A New Projection-Type Split-Sample Score Test In Linear Instrumental Variables Regression," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1820-1837, December.
  10. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  11. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
  12. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-94, March.
  13. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  14. repec:cup:cbooks:9780521496032 is not listed on IDEAS
  15. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
  16. Moon, Hyungsik Roger & Schorfheide, Frank, 2009. "Estimation with overidentifying inequality moment conditions," Journal of Econometrics, Elsevier, vol. 153(2), pages 136-154, December.
  17. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
  18. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  19. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
  20. Whitney Newey & Richard Smith, 2003. "Higher order properties of GMM and generalised empirical likelihood estimators," CeMMAP working papers CWP04/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2008-26. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.