IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotics for LS, GLS, and Feasible GLS Statistics in an AR(1) Model with Conditional Heteroskedaticity

This paper considers a first-order autoregressive model with conditionally heteroskedastic innovations. The asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS procedures allow for misspecification of the form of the conditional heteroskedasticity and, hence, are referred to as quasi-GLS procedures. The asymptotic results are established for drifting sequences of the autoregressive parameter and the distribution of the time series of innovations. In particular, we consider the full range of cases in which the autoregressive parameter rho_{n} satisfies (i) n(1 - rho_{n}) approaches infinity and (ii) n(1 - rho_{n}) approaches h in [0,infinity) as n approaches infinity, where n is the sample size. Results of this type are needed to establish the uniform asymptotic properties of the LS and quasi-GLS statistics.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cowles.econ.yale.edu/P/cd/d16b/d1665-r.pdf
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1665R.

as
in new window

Length: 53 pages
Date of creation: Jun 2008
Date of revision: Mar 2010
Handle: RePEc:cwl:cwldpp:1665r
Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gonçalves, Sílvia & KILIAN, Lutz, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Cahiers de recherche 01-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  2. L Giraitis & P C B Phillips, . "Uniform limit theory for stationary autoregression," Discussion Papers 05/23, Department of Economics, University of York.
  3. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(02), pages 426-468, April.
  4. Kim, Kiwhan & Schmidt, Peter, 1993. "Unit root tests with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 59(3), pages 287-300, October.
  5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  6. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(03), pages 458-467, December.
  7. Hansen,B.E., 1998. "The grid bootstrap and the autoregressive model," Working papers 26, Wisconsin Madison - Social Systems.
  8. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-83, August.
  9. James H. Stock, 1991. "Confidence Intervals for the Largest Autoresgressive Root in U.S. Macroeconomic Time Series," NBER Technical Working Papers 0105, National Bureau of Economic Research, Inc.
  10. Seo, Byeongseon, 1999. "Distribution theory for unit root tests with conditional heteroskedasticity1," Journal of Econometrics, Elsevier, vol. 91(1), pages 113-144, July.
  11. Elliott, Graham & Stock, James H., 2001. "Confidence intervals for autoregressive coefficients near one," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 155-181, July.
  12. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(04), pages 489-500, December.
  13. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
  14. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, 09.
  15. Peter C.B. Phillips & Tassos Magdalinos, 2004. "Limit Theory for Moderate Deviations from a Unit Root," Cowles Foundation Discussion Papers 1471, Cowles Foundation for Research in Economics, Yale University.
  16. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, 05.
  17. Park, Joon, 2003. "Weak Unit Roots," Working Papers 2003-17, Rice University, Department of Economics.
  18. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-65, January.
  19. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
  20. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, 07.
  21. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-85, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1665r. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.