IDEAS home Printed from https://ideas.repec.org/p/zbw/darddp/dar_37696.html
   My bibliography  Save this paper

Seasonal Unit Root Tests under Structural Breaks

Author

Listed:
  • Hassler, Uwe
  • Rodrigues, Paulo M. M.

Abstract

In this paper, several seasonal unit root tests are analysed in the context of structural breaks at known time and a new break corrected test is suggested. We show that the widely used HEGY test as well as an LM variant thereof are asymptotically robust to seasonal mean shifts of finite magnitude. In finite samples, however, experiments reveal that such tests suffer from severe size distortions and power reductions when breaks are present. Hence, a new break corrected LM test is proposed in order to overcome this problem. Importantly, the correction for seasonal mean shifts bears no consequence on the limiting distributions thereby maintaining the legitimacy of canonical critical values. Moreover, although this test assumes a breakpoint a priori, it is robust in terms of misspecification of the time of the break. This asymptotic property is well reproduced in finite samples. Based on a Monte Carlo study, our new test is compared with other procedures suggested in the literature and shown to hold superior finite sample properties.

Suggested Citation

  • Hassler, Uwe & Rodrigues, Paulo M. M., 2002. "Seasonal Unit Root Tests under Structural Breaks," Darmstadt Discussion Papers in Economics 113, Darmstadt University of Technology, Department of Law and Economics.
  • Handle: RePEc:zbw:darddp:dar_37696
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/84842/1/ddpie_113.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markku Lanne & Helmut Lütkepohl & Pentti Saikkonen, 2003. "Test Procedures for Unit Roots in Time Series with Level Shifts at Unknown Time," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(1), pages 91-115, February.
    2. Perron, Pierre & Vogelsang, Timothy J., "undated". "Level Shifts and Purchasing Power Parity," Instructional Stata datasets for econometrics levshift, Boston College Department of Economics.
    3. Schmidt, Peter & Lee, Junsoo, 1991. "A modification of the Schmidt-Phillips unit root test," Economics Letters, Elsevier, vol. 36(3), pages 285-289, July.
    4. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    5. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
    6. da Silva Lopes, Artur C. B., 2001. "The robustness of tests for seasonal differencing to structural breaks," Economics Letters, Elsevier, vol. 71(2), pages 173-179, May.
    7. Saikkonen, Pentti & Lütkepohl, Helmut, 2002. "Testing For A Unit Root In A Time Series With A Level Shift At Unknown Time," Econometric Theory, Cambridge University Press, vol. 18(2), pages 313-348, April.
    8. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    9. Amsler, Christine & Lee, Junsoo, 1995. "An LM Test for a Unit Root in the Presence of a Structural Change," Econometric Theory, Cambridge University Press, vol. 11(2), pages 359-368, February.
    10. Philip Hans Franses & Timothy J. Vogelsang, 1998. "On Seasonal Cycles, Unit Roots, And Mean Shifts," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 231-240, May.
    11. Balcombe, Kelvin, 1999. "Seasonal Unit Root Tests with Structural Breaks in Deterministic Seasonality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 569-582, November.
    12. Perron, Pierre & Vogelsang, Timothy J, 1992. "Nonstationarity and Level Shifts with an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 301-320, July.
    13. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    14. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    15. Perron, Pierre, 1990. "Testing for a Unit Root in a Time Series with a Changing Mean," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 153-162, April.
    16. Taylor, A M Robert, 2002. "Regression-Based Unit Root Tests with Recursive Mean Adjustment for Seasonal and Nonseasonal Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 269-281, April.
    17. Smith, Jeremy & Otero, Jesus, 1997. "Structural breaks and seasonal integration," Economics Letters, Elsevier, vol. 56(1), pages 13-19, September.
    18. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    19. Franses, Philip Hans & Hoek, Henk & Paap, Richard, 1997. "Bayesian analysis of seasonal unit roots and seasonal mean shifts," Journal of Econometrics, Elsevier, vol. 78(2), pages 359-380, June.
    20. Breitung, Jörg & Franses, Philip Hans, 1998. "On Phillips–Perron-Type Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 14(2), pages 200-221, April.
    21. Park, Joon Y. & Sung, Jaewhan, 1994. "Testing for Unit Roots in Models with Structural Change," Econometric Theory, Cambridge University Press, vol. 10(5), pages 917-936, December.
    22. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    23. Kelvin Balcombe, 1999. "Seasonal Unit Root Tests with Structural Breaks in Deterministic Seasonality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 569-582, November.
    24. Leybourne, Stephen J. & C. Mills, Terence & Newbold, Paul, 1998. "Spurious rejections by Dickey-Fuller tests in the presence of a break under the null," Journal of Econometrics, Elsevier, vol. 87(1), pages 191-203, August.
    25. Philip Hans Franses & Bart Hobijn, 1997. "Critical values for unit root tests in seasonal time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 25-48.
    26. Paulo M. M. Rodrigues, 2002. "On LM type tests for seasonal unit roots in quarterly data," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 176-195, June.
    27. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    28. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junsoo Lee & Mark C. Strazicich, 2013. "Minimum LM unit root test with one structural break," Economics Bulletin, AccessEcon, vol. 33(4), pages 2483-2492.
    2. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    3. Luis C. Nunes & Paulo M. M. Rodrigues, 2011. "On LM‐type tests for seasonal unit roots in the presence of a break in trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 108-134, March.
    4. Artur C. B. Da Silva Lopes, 2008. "Finite Sample Effects Of Pure Seasonal Mean Shifts On Dickey–Fuller Tests: A Simulation Study," Manchester School, University of Manchester, vol. 76(5), pages 528-538, September.
    5. El Montasser, Ghassen & Boufateh, Talel & Issaoui, Fakhri, 2013. "The seasonal KPSS test when neglecting seasonal dummies: a Monte Carlo analysis," MPRA Paper 46226, University Library of Munich, Germany.
    6. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, March.
    7. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.
    8. B. da Silva Lopes, Artur C., 2005. "Finite sample effects of pure seasonal mean shifts on Dickey-Fuller tests," MPRA Paper 125, University Library of Munich, Germany, revised May 2006.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    2. Harvey, David I. & Leybourne, Stephen J. & Newbold, Paul, 2002. "Seasonal unit root tests with seasonal mean shifts," Economics Letters, Elsevier, vol. 76(2), pages 295-302, July.
    3. Luis C. Nunes & Paulo M. M. Rodrigues, 2011. "On LM‐type tests for seasonal unit roots in the presence of a break in trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 108-134, March.
    4. Westerlund, Joakim & Costantini, Mauro & Narayan, Paresh & Popp, Stephan, 2009. "Seasonal Unit Root Tests for Trending and Breaking Series with Application to Industrial Production," Working Papers in Economics 377, University of Gothenburg, Department of Economics.
    5. Méndez Parra, Maximiliano, 2015. "Futures prices, trade and domestic supply of agricultural commodities," Economics PhD Theses 0115, Department of Economics, University of Sussex Business School.
    6. Jürgen Wolters & Uwe Hassler, 2006. "Unit root testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 43-58, March.
    7. B. da Silva Lopes, Artur C., 2005. "Finite sample effects of pure seasonal mean shifts on Dickey-Fuller tests," MPRA Paper 125, University Library of Munich, Germany, revised May 2006.
    8. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    9. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    10. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
    11. Markku Lanne & Helmut Lütkepohl & Pentti Saikkonen, 2003. "Test Procedures for Unit Roots in Time Series with Level Shifts at Unknown Time," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(1), pages 91-115, February.
    12. Mendez Parra, Maximiliano, 2015. "Seasonal Unit Roots and Structural Breaks in agricultural time series: Monthly exports and domestic supply in Argentina," MPRA Paper 63831, University Library of Munich, Germany, revised 06 Apr 2015.
    13. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
    14. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, March.
    15. Artur C. B. Da Silva Lopes, 2008. "Finite Sample Effects Of Pure Seasonal Mean Shifts On Dickey–Fuller Tests: A Simulation Study," Manchester School, University of Manchester, vol. 76(5), pages 528-538, September.
    16. Ghysels, Eric & Perron, Pierre, 1996. "The effect of linear filters on dynamic time series with structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 69-97, January.
    17. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    18. Busetti, Fabio & Taylor, A. M. Robert, 2003. "Testing against stochastic trend and seasonality in the presence of unattended breaks and unit roots," Journal of Econometrics, Elsevier, vol. 117(1), pages 21-53, November.
    19. Ahn & Byung Chul, 1994. "Testing the null of stationarity in the presence of structural breaks for multiple time series," Econometrics 9411001, University Library of Munich, Germany, revised 08 Nov 1994.
    20. Vougas, Dimitrios V., 2006. "On unit root testing with smooth transitions," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 797-800, November.

    More about this item

    Keywords

    Structural Breaks; Unit Roots; Seasonal Unit Root Tests;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:darddp:dar_37696. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vwthdde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vwthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.