IDEAS home Printed from https://ideas.repec.org/p/isu/genstf/200304010800001212.html

Powerful Trend Function Tests That are Robust to Strong Serial Correlation with an Application to the Prebish Singer Hypothesis

Author

Listed:
  • Bunzel, Helle
  • Vogelsang, Timothy J.

Abstract

We propose tests for hypotheses on the parameters of the deterministic trend function of a univariate time series. The tests do not require knowledge of the form of serial correlation in the data, and they are robust to strong serial correlation. The data can contain a unit root and still have the correct size asymptotically. The tests that we analyze are standard heteroscedasticity autocorrelation robust tests based on nonparametric kernel variance estimators. We analyze these tests using the fixed-b asymptotic framework recently proposed by Kiefer and Vogelsang. This analysis allows us to analyze the power properties of the tests with regard to bandwidth and kernel choices. Our analysis shows that among popular kernels, specific kernel and bandwidth choices deliver tests with maximal power within a specific class of tests. Based on the theoretical results, we propose a data-dependent bandwidth rule that maximizes integrated power. Our recommended test is shown to have power that dominates a related test proposed by Vogelsang. We apply the recommended test to the logarithm of a net barter terms of trade series and we find that this series has a statistically significant negative slope. This finding is consistent with the well-known Prebisch–Singer hypothesis.

Suggested Citation

  • Bunzel, Helle & Vogelsang, Timothy J., 2003. "Powerful Trend Function Tests That are Robust to Strong Serial Correlation with an Application to the Prebish Singer Hypothesis," ISU General Staff Papers 200304010800001212, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genstf:200304010800001212
    as

    Download full text from publisher

    File URL: https://dr.lib.iastate.edu/server/api/core/bitstreams/df0f1931-fd39-450e-a80a-5e71d2b1bbff/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genstf:200304010800001212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.