IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v39y2023i3p443-480_1.html

Inference On The Dimension Of The Nonstationary Subspace In Functional Time Series

Author

Listed:
  • Nielsen, Morten Ørregaard
  • Seo, Won-Ki
  • Seong, Dakyung

Abstract

We propose a statistical procedure to determine the dimension of the nonstationary subspace of cointegrated functional time series taking values in the Hilbert space of square-integrable functions defined on a compact interval. The procedure is based on sequential application of a proposed test for the dimension of the nonstationary subspace. To avoid estimation of the long-run covariance operator, our test is based on a variance ratio-type statistic. We derive the asymptotic null distribution and prove consistency of the test. Monte Carlo simulations show good performance of our test and provide evidence that it outperforms the existing testing procedure. We apply our methodology to three empirical examples: age-specific U.S. employment rates, Australian temperature curves, and Ontario electricity demand.

Suggested Citation

  • Nielsen, Morten Ørregaard & Seo, Won-Ki & Seong, Dakyung, 2023. "Inference On The Dimension Of The Nonstationary Subspace In Functional Time Series," Econometric Theory, Cambridge University Press, vol. 39(3), pages 443-480, June.
  • Handle: RePEc:cup:etheor:v:39:y:2023:i:3:p:443-480_1
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466622000111/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    2. Kyungsik Nam & Won-Ki Seo, 2025. "Functional Regression with Nonstationarity and Error Contamination: Application to the Economic Impact of Climate Change," Papers 2509.08591, arXiv.org, revised Oct 2025.
    3. Won‐Ki Seo, 2024. "Functional principal component analysis for cointegrated functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 320-330, March.
    4. Massimo Franchi & Iliyan Georgiev & Paolo Paruolo, 2024. "Canonical correlation analysis of stochastic trends via functional approximation," Papers 2411.19572, arXiv.org, revised Sep 2025.
    5. Morten {O}rregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2023. "Inference on common trends in functional time series," Papers 2312.00590, arXiv.org, revised Oct 2025.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:39:y:2023:i:3:p:443-480_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.