IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v16y2000i05p621-642_16.html
   My bibliography  Save this article

The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I

Author

Listed:
  • de Jong, Robert M.
  • Davidson, James

Abstract

This paper gives new conditions for the functional central limit theorem, and weak convergence of stochastic integrals, for near-epoch-dependent functions of mixing processes. These results have fundamental applications in the theory of unit root testing and cointegrating regressions. The conditions given improve on existing results in the literature in terms of the amount of dependence and heterogeneity permitted, and in particular, these appear to be the first such theorems in which virtually the same assumptions are sufficient for both modes of convergence.

Suggested Citation

  • de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
  • Handle: RePEc:cup:etheor:v:16:y:2000:i:05:p:621-642_16
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600165016/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:16:y:2000:i:05:p:621-642_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.