IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/1304.html
   My bibliography  Save this paper

A fast fractional difference algorithm

Author

Listed:
  • Andreas Noack Jensen

    (Department of Economics, University of Copenhagen)

  • Morten Ørregaard Nielsen

    (Queen’s University and CREATES)

Abstract

We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T^2, where T is the length of the time series. Our algorithm allows calculation speed of order T^logT. For moderate and large sample sizes, the difference in computation time is substantial.

Suggested Citation

  • Andreas Noack Jensen & Morten Ørregaard Nielsen, 2013. "A fast fractional difference algorithm," Discussion Papers 13-04, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:1304
    as

    Download full text from publisher

    File URL: http://www.econ.ku.dk/english/research/publications/wp/dp_2013/1304.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    3. Johansen, SÃÿren & ßrregaard Nielsen, Morten, 2010. "Likelihood inference for a fractionally cointegrated vector autoregressive model," Queen's Economics Department Working Papers 273737, Queen's University - Department of Economics.
    4. Chen, Willa W. & Hurvich, Clifford M. & Lu, Yi, 2006. "On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 812-822, June.
    5. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    6. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noack Jensen, Andreas & ßrregaard Nielsen, Morten, 2013. "A fast fractional difference algorithm," Queen's Economics Department Working Papers 274632, Queen's University - Department of Economics.
    2. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    3. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    4. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    5. Guglielmo Maria Caporale & Luis Alberiko Gil-Alana & Nicola Rubino & Inmaculada Vilchez, 2024. "Modelling Loans to Non-Financial Corporations in the Eurozone: A Long-Memory Approach," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 30(3), pages 231-254, August.
    6. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    7. Maria Malmierca-Ordoqui & Luis A. Gil-Alana & Manuel Monge, 2024. "Fractional cointegration between energy imports to the EURO area and exchange rates to the US dollar," Empirical Economics, Springer, vol. 66(2), pages 859-882, February.
    8. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    9. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.
    10. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
    11. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    12. Luis A. Gil-Alana & Emmanuel Joel Aikins Abakah & Nieves Carmona-González & Aviral Kumar Tiwari, 2024. "Consumer sentiments across G7 and BRICS economies: Are they related?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 48(2), pages 323-344, June.
    13. Adebola, Solarin Sakiru & Gil-Alana, Luis A. & Madigu, Godfrey, 2019. "Gold prices and the cryptocurrencies: Evidence of convergence and cointegration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1227-1236.
    14. repec:hum:wpaper:sfb649dp2016-001 is not listed on IDEAS
    15. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    16. Tule, Moses K. & Salisu, Afees A. & Ebuh, Godday U., 2020. "A test for inflation persistence in Nigeria using fractional integration & fractional cointegration techniques," Economic Modelling, Elsevier, vol. 87(C), pages 225-237.
    17. Nuruddeen Usman & Martins Apinran, 2024. "Policy rates in ECOWAS: are they fractionally cointegrated?," SN Business & Economics, Springer, vol. 4(11), pages 1-15, November.
    18. Oloko, Tirimisiyu F. & Ogbonna, Ahamuefula E. & Adedeji, Abdulfatai A. & Lakhani, Noman, 2021. "Oil price shocks and inflation rate persistence: A Fractional Cointegration VAR approach," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 259-275.
    19. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    20. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
    21. Monge, Manuel & Lazcano, Ana & Parada, José Luis, 2023. "Growth vs value investing: Persistence and time trend before and after COVID-19," Research in International Business and Finance, Elsevier, vol. 65(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:1304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.