IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/14-29.html
   My bibliography  Save this paper

Econometric Analysis of Financial Derivatives: An Overview

Author

Listed:

Abstract

One of the fastest growing areas in empirical finance, and also one of the least rigorously analyzed, especially from a financial econometrics perspective, is the econometric analysis of financial derivatives, which are typically complicated and difficult to analyze. The purpose of this special issue of the Journal of Econometrics on “Econometric Analysis of Financial Derivatives” is to highlight several areas of research by leading academics in which novel econometric, financial econometric, mathematical finance and empirical finance methods have contributed significantly to the econometric analysis of financial derivatives.

Suggested Citation

  • Chia-Lin Chang & Michael McAleer, 2014. "Econometric Analysis of Financial Derivatives: An Overview," Working Papers in Economics 14/29, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:14/29
    as

    Download full text from publisher

    File URL: https://repec.canterbury.ac.nz/cbt/econwp/1429.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    2. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    3. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    4. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    5. Bollerslev, Tim & Xu, Lai & Zhou, Hao, 2015. "Stock return and cash flow predictability: The role of volatility risk," Journal of Econometrics, Elsevier, vol. 187(2), pages 458-471.
    6. Chang, Chia-Lin & Jiménez-Martín, Juan-Ángel & Maasoumi, Esfandiar & Pérez-Amaral, Teodosio, 2015. "A stochastic dominance approach to financial risk management strategies," Journal of Econometrics, Elsevier, vol. 187(2), pages 472-485.
    7. Eraker, Bjørn & Wang, Jiakou, 2015. "A non-linear dynamic model of the variance risk premium," Journal of Econometrics, Elsevier, vol. 187(2), pages 547-556.
    8. Gourieroux, C. & Monfort, A., 2015. "Pricing with finite dimensional dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 408-417.
    9. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    10. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    11. Sojli, Elvira & Tham, Wing Wah, 2015. "Divided governments and futures prices," Journal of Econometrics, Elsevier, vol. 187(2), pages 622-633.
    12. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    13. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    14. Bonomo, Marco & Garcia, René & Meddahi, Nour & Tédongap, Roméo, 2015. "The long and the short of the risk-return trade-off," Journal of Econometrics, Elsevier, vol. 187(2), pages 580-592.
    15. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    16. Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.
    17. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Naim Azimi, 2016. "Modeling the Clustering Volatility of India¡¯s Wholesale Price Index and the Factors Affecting It," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 141-148, March.
    2. Denys Pommeret & Laurence Reboul & Anne-francoise Yao, 2023. "Testing the equality of the laws of two strictly stationary processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 193-214, April.
    3. Azimi, Mohammad Naim, 2015. "Modelling the Clustering Volatility of India's Wholesales Price Index and the Factors Affecting it," MPRA Paper 70267, University Library of Munich, Germany.
    4. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    5. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, C-L. & McAleer, M.J., 2014. "Econometric Analysis of Financial Derivatives," Econometric Institute Research Papers EI 2015-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    3. Oh, Dong Hwan & Park, Yang-Ho, 2023. "GARCH option pricing with volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 146(C).
    4. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    5. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    6. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "Liquidity and realized range-based volatility forecasting: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1102-1113.
    7. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    8. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    9. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    10. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    11. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
    12. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    13. Venter, Pierre J & Maré, Eben, 2022. "Price discovery in the volatility index option market: A univariate GARCH approach," Finance Research Letters, Elsevier, vol. 44(C).
    14. Zhenjie Liang & Futian Weng & Yuanting Ma & Yan Xu & Miao Zhu & Cai Yang, 2022. "Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis," Mathematics, MDPI, vol. 10(7), pages 1-11, April.
    15. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    16. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    17. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    18. Chen Tong & Peter Reinhard Hansen & Zhuo Huang, 2022. "Option pricing with state‐dependent pricing kernel," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1409-1433, August.
    19. Javier Hualde & Morten Ørregaard Nielsen, 2022. "Truncated sum-of-squares estimation of fractional time series models with generalized power law trend," CREATES Research Papers 2022-07, Department of Economics and Business Economics, Aarhus University.
    20. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.

    More about this item

    Keywords

    Stochastic volatility; switching volatility; volatility risk; option pricing dynamics; futures prices; fractional integration; stochastic dominance; variance risk premium; fat tails; leverage and asymmetry; divided governments;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:14/29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Albert Yee (email available below). General contact details of provider: https://edirc.repec.org/data/decannz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.