IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/201321.html
   My bibliography  Save this paper

Empirical Evidence on the Importance of Aggregation, Asymmetry, and Jumps for Volatility Prediction

Author

Listed:
  • Diep Duong

    (Rutgers University)

  • Norman Swanson

    (Rutgers University)

Abstract

Many recent modelling advances in finance topics ranging from the pricing of volatility-based derivative products to asset management are predicated on the importance of jumps, or discontinuous movements in asset returns. In light of this, a number of recent papers have addressed volatility predictability, some from the perspective of the usefulness of jumps in forecasting volatility. Key papers in this area include Andersen, Bollerslev, Diebold and Labys (2003), Corsi (2004), Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Reno (2008), Barndorff, Kinnebrock, and Shephard (2010), Patton and Shephard (2011), and the references cited therein. In this paper, we review the extant literature and then present new empirical evidence on the predictive content of realized measures of jump power variations (including upside and downside risk, jump asymmetry, and truncated jump variables), constructed using instantaneous returns, i.e., |r_{t}|^{q}, 0≤q≤6, in the spirit of Ding, Granger and Engle (1993) and Ding and Granger (1996). Our prediction experiments use high frequency price returns constructed using S&P500 futures data as well as stocks in the Dow 30; and our empirical implementation involves estimating linear and nonlinear heterogeneous autoregressive realized volatility (HAR-RV) type models. We find that past "large" jump power variations help less in the prediction of future realized volatility, than past "small" jump power variations. Additionally, we find evidence that past realized signed jump power variations, which have not previously been examined in this literature, are strongly correlated with future volatility, and that past downside jump variations matter in prediction. Finally, incorporation of downside and upside jump power variations does improve predictability, albeit to a limited extent.

Suggested Citation

  • Diep Duong & Norman Swanson, 2013. "Empirical Evidence on the Importance of Aggregation, Asymmetry, and Jumps for Volatility Prediction," Departmental Working Papers 201321, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:201321
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2013-21.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Inference for Integrated Volatility," Departmental Working Papers 200616, Rutgers University, Department of Economics.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    4. Todorov, Viktor & Tauchen, George, 2010. "Activity signature functions for high-frequency data analysis," Journal of Econometrics, Elsevier, vol. 154(2), pages 125-138, February.
    5. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    9. Barndorff-Nielsen, Ole Eiler & Graversen, Svend Erik & Jacod, Jean & Podolskij, Mark, 2004. "A central limit theorem for realised power and bipower variations of continuous semimartingales," Technical Reports 2004,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Perez-Quiros, Gabriel & Timmermann, Allan, 2001. "Business cycle asymmetries in stock returns: Evidence from higher order moments and conditional densities," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 259-306, July.
    11. Neil Shephard, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," Economics Series Working Papers 2004-FE-21, University of Oxford, Department of Economics.
    12. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
      • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    15. Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012. "Modelling and forecasting noisy realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
    16. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    17. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    18. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    19. Corradi, Valentina & Distaso, Walter & Swanson, Norman R., 2009. "Predictive density estimators for daily volatility based on the use of realized measures," Journal of Econometrics, Elsevier, vol. 150(2), pages 119-138, June.
    20. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
    21. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    22. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    23. Barndorff-Nielsen, Ole E. & Shephard, Neil & Winkel, Matthias, 2006. "Limit theorems for multipower variation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 796-806, May.
    24. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    25. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284, Elsevier.
    26. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    27. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    28. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    29. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    30. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    31. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    32. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    33. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    34. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    35. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    36. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    37. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    38. Jia Li, 2013. "Robust Estimation and Inference for Jumps in Noisy High Frequency Data: A Local‐to‐Continuity Theory for the Pre‐Averaging Method," Econometrica, Econometric Society, vol. 81(4), pages 1673-1693, July.
    39. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    2. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    4. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    5. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    6. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    7. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    8. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    10. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    11. repec:ipg:wpaper:2014-053 is not listed on IDEAS
    12. repec:dau:papers:123456789/6805 is not listed on IDEAS
    13. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    14. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    15. Hassan Zada & Arshad Hassan & Wing-Keung Wong, 2021. "Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets," Economies, MDPI, vol. 9(2), pages 1-26, June.
    16. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    17. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    18. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    19. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    20. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    21. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    22. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.

    More about this item

    Keywords

    realized volatility; jumps; jump power variations; forecasting; jump test;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/derutus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.