IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1431.html
   My bibliography  Save this paper

Econometric Analysis of Financial Derivatives: An Overview

Author

Listed:
  • Chia-Lin Chang

    (Department of Applied Economics, Department of Finance, National Chung Hsing University, Taiwan.)

  • Michael McAleer

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute, The Netherlands, Department of Quantitative Economics, Complutense University of Madrid, and Institute of Economic Research, Kyoto University.)

Abstract

One of the fastest growing areas in empirical finance, and also one of the least rigorously analyzed, especially from a financial econometrics perspective, is the econometric analysis of financial derivatives, which are typically complicated and difficult to analyze. The purpose of this special issue of the journal on “Econometric Analysis of Financial Derivatives” is to highlight several areas of research by leading academics in which novel econometric, financial econometric, mathematical finance and empirical finance methods have contributed significantly to the econometric analysis of financial derivatives, including market-based estimation of stochastic volatility models, the fine structure of equity-index option dynamics, leverage and feedback effects in multifactor Wishart stochastic volatility for option pricing, option pricing with non-Gaussian scaling and infinite-state switching volatility, stock return and cash flow predictability: the role of volatility risk, the long and the short of the risk-return trade-off, What’s beneath the surface? option pricing with multifrequency latent states, bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets, a stochastic dominance approach to financial risk management strategies, empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction, non-linear dynamic model of the variance risk premium, pricing with finite dimensional dependence, quanto option pricing in the presence of fat tails and asymmetric dependence, smile from the past: a general option pricing framework with multiple volatility and leverage components, COMFORT: A common market factor non-Gaussian returns model, divided governments and futures prices, and model-based pricing for financial derivatives keywords: Hedge Fund Diversi_cation, Spillover Index, Markowitz Analaysis, Downside Risk, CVaR, Draw-Down.

Suggested Citation

  • Chia-Lin Chang & Michael McAleer, 2014. "Econometric Analysis of Financial Derivatives: An Overview," Documentos de Trabajo del ICAE 2014-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1431
    Note: The Guest Co-editors wish to thank the Editors of the Journal of Econometrics for their support and encouragement, and the referees for their timely and very helpful comments and suggestions on the papers comprising the special issue. For financial support, the first author wishes to thank the National Science Council, Taiwan, and the .second author wishes to acknowledge the Australian Research Council and the National Science Council, Taiwan.
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/27822/1/1431.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    2. Sojli, Elvira & Tham, Wing Wah, 2015. "Divided governments and futures prices," Journal of Econometrics, Elsevier, vol. 187(2), pages 622-633.
    3. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    4. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    5. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    6. Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.
    7. Chang, Chia-Lin & Jiménez-Martín, Juan-Ángel & Maasoumi, Esfandiar & Pérez-Amaral, Teodosio, 2015. "A stochastic dominance approach to financial risk management strategies," Journal of Econometrics, Elsevier, vol. 187(2), pages 472-485.
    8. Cavaliere, Giuseppe & ßrregaard Nielsen, Morten & Taylor, A.M. Robert, 2013. "Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets," Queen's Economics Department Working Papers 274634, Queen's University - Department of Economics.
    9. Bollerslev, Tim & Xu, Lai & Zhou, Hao, 2015. "Stock return and cash flow predictability: The role of volatility risk," Journal of Econometrics, Elsevier, vol. 187(2), pages 458-471.
    10. Bonomo, Marco & Garcia, René & Meddahi, Nour & Tédongap, Roméo, 2015. "The long and the short of the risk-return trade-off," Journal of Econometrics, Elsevier, vol. 187(2), pages 580-592.
    11. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    12. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    13. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    14. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    15. Eraker, Bjørn & Wang, Jiakou, 2015. "A non-linear dynamic model of the variance risk premium," Journal of Econometrics, Elsevier, vol. 187(2), pages 547-556.
    16. Gourieroux, C. & Monfort, A., 2015. "Pricing with finite dimensional dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 408-417.
    17. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    18. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    2. Denys Pommeret & Laurence Reboul & Anne-francoise Yao, 2023. "Testing the equality of the laws of two strictly stationary processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 193-214, April.
    3. Mohammad Naim Azimi, 2016. "Modeling the Clustering Volatility of India¡¯s Wholesale Price Index and the Factors Affecting It," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 141-148, March.
    4. Azimi, Mohammad Naim, 2015. "Modelling the Clustering Volatility of India's Wholesales Price Index and the Factors Affecting it," MPRA Paper 70267, University Library of Munich, Germany.
    5. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, C-L. & McAleer, M.J., 2014. "Econometric Analysis of Financial Derivatives," Econometric Institute Research Papers EI 2015-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Javier Hualde & Morten Ørregaard Nielsen, 2022. "Truncated sum-of-squares estimation of fractional time series models with generalized power law trend," CREATES Research Papers 2022-07, Department of Economics and Business Economics, Aarhus University.
    3. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    4. Gil-Alana, Luis A. & Mudida, Robert & Yaya, OlaOluwa S & Osuolale, Kazeem & Ogbonna, Ephraim A, 2019. "Influence of US Presidential Terms on S&P500 Index Using a Time Series Analysis Approach," MPRA Paper 93941, University Library of Munich, Germany.
    5. Demetrescu, Matei & Sibbertsen, Philipp, 2016. "Inference on the long-memory properties of time series with non-stationary volatility," Economics Letters, Elsevier, vol. 144(C), pages 80-84.
    6. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    7. Cavaliere, Giuseppe & ßrregaard Nielsen, Morten & Taylor, A.M. Robert, 2013. "Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets," Queen's Economics Department Working Papers 274634, Queen's University - Department of Economics.
    8. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    9. Arteche, Josu, 2024. "Bootstrapping long memory time series: Application in low frequency estimators," Econometrics and Statistics, Elsevier, vol. 29(C), pages 1-15.
    10. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    11. Luis A. Gil‐Alana & Robert Mudida & OlaOluwa S. Yaya & Kazeem A. Osuolale & Ahamuefula E. Ogbonna, 2021. "Mapping US presidential terms with S&P500 index: Time series analysis approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1938-1954, April.
    12. Cavaliere, Giuseppe & Ørregaard Nielsen, Morten & Taylor, A.M. Robert, 2016. "Quasi-Maximum Likelihood Estimation and Bootstrap Inference in Fractional Time Series Models with Heteroskedasticity of Unknown Form," Queen's Economics Department Working Papers 274649, Queen's University - Department of Economics.
    13. Dony Abdul Chalid & Rangga Handika, 2022. "Comovement and contagion in commodity markets," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2064079-206, December.
    14. Oh, Dong Hwan & Park, Yang-Ho, 2023. "GARCH option pricing with volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 146(C).
    15. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    16. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    17. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    18. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
    19. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    20. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.