IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Using the bootstrap for finite sample confidence intervals of the log periodogram regression

  • Arteche, Josu
  • Orbe, Jesus

Log periodogram regression is widely applied in empirical applications to estimate the memory parameter, d, of long memory time series. This estimator is consistent for d

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V8V-4SF8SWR-4/2/e9c2e8c48fb10f1577e1b2d92cd5f517
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 53 (2009)
Issue (Month): 6 (April)
Pages: 1940-1953

as
in new window

Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:1940-1953
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. James G. MacKinnon & Anthony A. Smith Jr., 1995. "Approximate Bias Correction in Econometrics," Working Papers 919, Queen's University, Department of Economics.
  2. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
  3. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  4. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  5. Josu Arteche, 2006. "Semiparametric estimation in perturbed long memory series," Computing in Economics and Finance 2006 22, Society for Computational Economics.
  6. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  7. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
  8. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  9. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
  10. L. Giraitis & P.M. Robinson, 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
  11. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  12. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
  13. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  14. Silva, E.M. & Franco, G.C. & Reisen, V.A. & Cruz, F.R.B., 2006. "Local bootstrap approaches for fractional differential parameter estimation in ARFIMA models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1002-1011, November.
  15. James G. MacKinnon, 2006. "Bootstrap Methods in Econometrics," Working Papers 1028, Queen's University, Department of Economics.
  16. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, 07.
  17. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
  18. Francis X. Diebold & Glenn D. Rudebusch, 1988. "Long memory and persistence in aggregate output," Finance and Economics Discussion Series 7, Board of Governors of the Federal Reserve System (U.S.).
  19. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
  20. repec:cep:stiecm:/2003/452 is not listed on IDEAS
  21. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
  22. Guggenberger, Patrik & Sun, Yixiao, 2004. "Bias-Reduced Log-Periodogram and Whittle Estimation of the Long-Memory Parameter Without Variance Inflation," University of California at San Diego, Economics Working Paper Series qt2z99w4sm, Department of Economics, UC San Diego.
  23. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
  24. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  25. Andersson, Michael K. & Gredenhoff, Mikael P., 1998. "Robust Testing for Fractional Integration Using the Bootstrap," SSE/EFI Working Paper Series in Economics and Finance 218, Stockholm School of Economics.
  26. Hidalgo, Javier, 2003. "An alternative bootstrap to moving blocks for time series regression models," Journal of Econometrics, Elsevier, vol. 117(2), pages 369-399, December.
  27. Arteche, J. & Orbe, J., 2005. "Bootstrapping the log-periodogram regression," Economics Letters, Elsevier, vol. 86(1), pages 79-85, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:1940-1953. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.