IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1366.html
   My bibliography  Save this paper

Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes

Author

Abstract

This paper studies fractional processes that may be perturbed by weakly dependent time series. The model for a perturbed fractional process has a components framework in which there may be components of both long and short memory. All commonly used estimates of the long memory parameter (such as log periodogram (LP) regression) may be used in a components model where the data are affected by weakly dependent perturbations, but these estimates can suffer from serious downward bias. To circumvent this problem, the present paper proposes a new procedure that allows for the possible presence of additive perturbations in the data. The new estimator resembles the LP regression estimator but involves an additional (nonlinear) term in the regression that takes account of possible perturbation effects in the data. Under some smoothness assumptions at the origin, the bias of the new estimator is shown to disappear at a faster rate than that of the LP estimator, while its asymptotic variance is inflated only by a multiplicative constant. In consequence, the optimal rate of convergence to zero of the asymptotic MSE of the new estimator is faster than that of the LP estimator. Some simulation results demonstrate the viability and the bias-reducing feature of the new estimator relative to the LP estimator in finite samples. A test for the presence of perturbations in the data is given.

Suggested Citation

  • Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1366
    Note: CFP 1077.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d13/d1366.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    2. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    3. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    4. Robinson, Peter M. & Henry, Marc, 2003. "Higher-order kernel semiparametric M-estimation of long memory," Journal of Econometrics, Elsevier, vol. 114(1), pages 1-27, May.
    5. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
    6. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(1), pages 44-79, February.
    7. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    8. Katsumi Shimotsu & Peter C. B. Phillips, 2002. "Pooled Log Periodogram Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(1), pages 57-93, January.
    9. Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
    10. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
    11. Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
    12. Donald W.K. Andrews & Yixiao Sun, 2001. "Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1293, Cowles Foundation for Research in Economics, Yale University.
    13. Marmol, Francesc & Granger, C.W.J. (Clive William John), 1998. "The correlogram of a long memory process plus a simple noise," DES - Working Papers. Statistics and Econometrics. WS 9820, Universidad Carlos III de Madrid. Departamento de Estadística.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    2. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
    3. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    4. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    5. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    6. Robinson, Peter M. & Henry, Marc, 2003. "Higher-order kernel semiparametric M-estimation of long memory," Journal of Econometrics, Elsevier, vol. 114(1), pages 1-27, May.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    8. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    9. Jin Lee, 2004. "Wavelet transform for log periodogram regression in long memory stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 682, Econometric Society.
    10. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    11. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series 497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    13. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    14. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    15. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 10(1), pages 1-25, March.
    16. Henryk Gurgul & Tomasz Wojtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Technology, Institute of Organization and Management, vol. 3, pages 29-56.
    17. Josu Arteche & Jesus Orbe, 2009. "Bootstrap‐based bandwidth choice for log‐periodogram regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 591-617, November.
    18. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    19. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Asymptotic bias; Asymptotic normality; Bias reduction; Fractional components model; Perturbed fractional process; Rate of convergence; Testing perturbations;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.