IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v29y2013i06p1196-1237_00.html

Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends

Author

Listed:
  • Mccloskey, Adam
  • Perron, Pierre

Abstract

We propose estimators of the memory parameter of a time series that are robust to a wide variety of random level shift processes, deterministic level shifts, and deterministic time trends. The estimators are simple trimmed versions of the popular log-periodogram regression estimator that employ certain sample-size-dependent and, in some cases, data-dependent trimmings that discard low-frequency components. We also show that a previously developed trimmed local Whittle estimator is robust to the same forms of data contamination. Regardless of whether the underlying long- or short-memory process is contaminated by level shifts or deterministic trends, the estimators are consistent and asymptotically normal with the same limiting variance as their standard untrimmed counterparts. Simulations show that the trimmed estimators perform their intended purpose quite well, substantially decreasing both finite-sample bias and root mean-squared error in the presence of these contaminating components. Furthermore, we assess the trade-offs involved with their use when such components are not present but the underlying process exhibits strong short-memory dynamics or is contaminated by noise. To balance the potential finite-sample biases involved in estimating the memory parameter, we recommend a particular adaptive version of the trimmed log-periodogram estimator that performs well in a wide variety of circumstances. We apply the estimators to stock market volatility data to find that various time series typically thought to be long-memory processes actually appear to be short- or very weak long-memory processes contaminated by level shifts or deterministic trends.

Suggested Citation

  • Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
  • Handle: RePEc:cup:etheor:v:29:y:2013:i:06:p:1196-1237_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466613000042/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:29:y:2013:i:06:p:1196-1237_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.