IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v162y2011i2p240-247.html

Estimation of fractional integration under temporal aggregation

Author

Listed:
  • Hassler, Uwe

Abstract

A result characterizing the effect of temporal aggregation in the frequency domain is known for arbitrary stationary processes and generalized for difference-stationary processes here. Temporal aggregation includes cumulation of flow variables as well as systematic (or skip) sampling of stock variables. Next, the aggregation result is applied to fractionally integrated processes. In particular, it is investigated whether typical frequency domain assumptions made for semiparametric estimation and inference are closed with respect to aggregation. With these findings it is spelled out, which estimators remain valid upon aggregation under which conditions on bandwidth selection.

Suggested Citation

  • Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
  • Handle: RePEc:eee:econom:v:162:y:2011:i:2:p:240-247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(11)00014-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Man, K.S. & Tiao, G.C., 2006. "Aggregation effect and forecasting temporal aggregates of long memory processes," International Journal of Forecasting, Elsevier, vol. 22(2), pages 267-281.
    2. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    3. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    4. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, March.
    5. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    6. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    7. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
    8. Souza, Leonardo R. & Smith, Jeremy, 2002. "Bias in the memory parameter for different sampling rates," International Journal of Forecasting, Elsevier, vol. 18(2), pages 299-313.
    9. Leonardo Rocha Souza, 2008. "Why Aggregate Long Memory Time Series?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 298-316.
    10. Shiller, Robert J. & Perron, Pierre, 1985. "Testing the random walk hypothesis : Power versus frequency of observation," Economics Letters, Elsevier, vol. 18(4), pages 381-386.
    11. Soulier, Philippe, 2001. "Moment bounds and central limit theorem for functions of Gaussian vectors," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 193-203, September.
    12. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    13. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    14. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
    15. Daniel O. Stram & William W. S. Wei, 1986. "Temporal Aggregation In The Arima Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 279-292, July.
    16. Violetta Dalla & Javier Hidalgo, 2005. "A Parametric Bootstrap Test for Cycles," STICERD - Econometrics Paper Series 486, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    18. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2008. "Corrigendum to "Estimating Long Memory in Volatility"," Econometrica, Econometric Society, vol. 76(3), pages 661-662, May.
    19. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    20. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    21. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    22. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    23. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-1435, November.
    24. Brewer, K. R. W., 1973. "Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models," Journal of Econometrics, Elsevier, vol. 1(2), pages 133-154, June.
    25. Chambers, Marcus J., 2008. "Corrigendum to: "Testing for unit roots with flow data and varying sampling frequency" [J. Econom. 119 (1) (2004) 1-18]," Journal of Econometrics, Elsevier, vol. 144(2), pages 524-525, June.
    26. Christiano, Lawrence J & Eichenbaum, Martin & Marshall, David, 1991. "The Permanent Income Hypothesis Revisited," Econometrica, Econometric Society, vol. 59(2), pages 397-423, March.
    27. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    28. Javier Hidalgo, 2005. "Semiparametric Estimation for Stationary Processes whose Spectra have an Unknown Pole," STICERD - Econometrics Paper Series 481, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    29. Lobato, I. & Robinson, P. M., 1996. "Averaged periodogram estimation of long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 303-324, July.
    30. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    31. Chambers, Marcus J., 1996. "The Estimation of Continuous Parameter Long-Memory Time Series Models," Econometric Theory, Cambridge University Press, vol. 12(2), pages 374-390, June.
    32. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    33. Hidalgo, Javier, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
    34. Chambers, Marcus J, 1998. "Long Memory and Aggregation in Macroeconomic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1053-1072, November.
    35. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," LSE Research Online Documents on Economics 6829, London School of Economics and Political Science, LSE Library.
    36. Rossana, Robert J & Seater, John J, 1995. "Temporal Aggregation and Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 441-451, October.
    37. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    38. Ivan Paya & Agustin Duarte & Ken Holden, 2007. "On the Relationship between Inflation Persistence and Temporal Aggregation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1521-1531, September.
    39. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    40. Hansen, Lars Peter & Sargent, Thomas J, 1983. "The Dimensionality of the Aliasing Problem in Models with Rational Spectral Densities," Econometrica, Econometric Society, vol. 51(2), pages 377-387, March.
    41. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 445-470.
    42. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    43. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series 424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    44. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 219-261.
    45. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, September.
    46. Guggenberger, Patrik & Sun, Yixiao, 2006. "Bias-Reduced Log-Periodogram And Whittle Estimation Of The Long-Memory Parameter Without Variance Inflation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 863-912, October.
    47. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
    48. Tschernig, R., 1994. "Long Memory in Foreign Exchange Rates Revisited," SFB 373 Discussion Papers 1994,46, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    49. Frederic S. Mishkin, 2007. "Inflation Dynamics," International Finance, Wiley Blackwell, vol. 10(3), pages 317-334, December.
    50. Hwang, Soosung, 2000. "The Effects Of Systematic Sampling And Temporal Aggregation On Discrete Time Long Memory Processes And Their Finite Sample Properties," Econometric Theory, Cambridge University Press, vol. 16(3), pages 347-372, June.
    51. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    52. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    53. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    54. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil-Alana, Luis Alberiko & Poza, Carlos, 2024. "Volatility persistence in metal prices," Resources Policy, Elsevier, vol. 88(C).
    2. Guglielmo Maria Caporale & Silvia García Tapia & Luis Alberiko Gil-Alana, 2024. "Persistence in Tax Revenues: Evidence from Some OECD Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 475-491, June.
    3. Giacomo Sbrana & Andrea Silvestrini, 2012. "Temporal aggregation of cyclical models with business cycle applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 93-107, March.
    4. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    5. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
    6. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & You, Kefei, 2018. "Exchange rate linkages between the ASEAN currencies, the US dollar and the Chinese RMB," Research in International Business and Finance, Elsevier, vol. 44(C), pages 227-238.
    7. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2013. "Long memory and fractional integration in high frequency data on the US dollar/British pound spot exchange rate," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 1-9.
    8. Davidson James & Rambaccussing Dooruj, 2015. "A Test of the Long Memory Hypothesis Based on Self-Similarity," Journal of Time Series Econometrics, De Gruyter, vol. 7(2), pages 115-141, July.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & You, Kefei, 2018. "Exchange rate linkages between the ASEAN currencies, the US dollar and the Chinese RMB," Research in International Business and Finance, Elsevier, vol. 44(C), pages 227-238.
    10. del Barrio Castro, Tomás & Rachinger, Heiko, 2021. "Aggregation of Seasonal Long-Memory Processes," Econometrics and Statistics, Elsevier, vol. 17(C), pages 95-106.
    11. Pierre Perron & Wendong Shi, 2020. "Temporal Aggregation and Long Memory for Asset Price Volatility," JRFM, MDPI, vol. 13(8), pages 1-18, August.
    12. Sun, Jingwei & Shi, Wendong, 2014. "Aggregation of the generalized fractional processes," Economics Letters, Elsevier, vol. 124(2), pages 258-262.
    13. Hassler, Uwe, 2014. "Persistence under temporal aggregation and differencing," Economics Letters, Elsevier, vol. 124(2), pages 318-322.
    14. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
    15. Pierre Perron & Wendong Shi, 2014. "Temporal Aggregation, Bandwidth Selection and Long Memory for Volatility Models," Boston University - Department of Economics - Working Papers Series wp2014-009, Boston University - Department of Economics.
    16. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Targeting: New Evidence from Fractional Integration and Cointegration," Working papers 2016-08, University of Connecticut, Department of Economics.
    17. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    18. Uwe Hassler, 2013. "Effect of temporal aggregation on multiple time series in the frequency domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 562-573, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:journl:peer-00815563 is not listed on IDEAS
    2. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    3. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    4. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2017. "Persistence and cycles in the us federal funds rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 1-8.
    5. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    6. Giovanni Caggiano & Efrem Castelnuovo, 2008. "Long Memory and Non-Linearities in International Inflation," "Marco Fanno" Working Papers 0076, Dipartimento di Scienze Economiche "Marco Fanno".
    7. Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
    8. Maria Nikoloudaki & Dikaios Tserkezos, 2008. "Temporal Aggregation Effects in Choosing the Optimal Lag Order in Stable ARMA Models: Some Monte Carlo Results," Working Papers 0822, University of Crete, Department of Economics.
    9. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    10. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    11. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    12. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    13. Kanchana Nadarajah & Gael M Martin & Donald S Poskitt, 2019. "Optimal Bias Correction of the Log-periodogram Estimator of the Fractional Parameter: A Jackknife Approach," Monash Econometrics and Business Statistics Working Papers 7/19, Monash University, Department of Econometrics and Business Statistics.
    14. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    15. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    16. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    17. Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013. "Nelson–Plosser revisited: The ACF approach," Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
    18. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    19. Alex Gonzaga & Michael Hauser, 2011. "A wavelet Whittle estimator of generalized long-memory stochastic volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 23-48, March.
    20. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    21. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.

    More about this item

    Keywords

    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:162:y:2011:i:2:p:240-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.