IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/4d689d7c-4d89-4ab6-b8c3-f682bb444710.html
   My bibliography  Save this paper

Missing observations in the dynamic regression model

Author

Listed:
  • Nijman, T.E.

    (Tilburg University, School of Economics and Management)

  • Palm, F.C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Nijman, T.E. & Palm, F.C., 1984. "Missing observations in the dynamic regression model," Other publications TiSEM 4d689d7c-4d89-4ab6-b8c3-f, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:4d689d7c-4d89-4ab6-b8c3-f682bb444710
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/651168/26694_7144.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zellner, Arnold & Montmarquette, Claude, 1971. "A Study of Some Aspects of Temporal Aggregation Problems in Econometric Analyses," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 335-342, November.
    2. Victor A. Ginsburgh, 1973. "A Further Note on the Derivation of Quarterly Figures Consistent with Annual Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(3), pages 368-374, November.
    3. Palm, F. C. & Nijman, T. E., 1982. "Linear regression using both temporally aggregated and temporally disaggregated data," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 333-343, August.
    4. Hsiao, Cheng, 1979. "Linear regression using both temporally aggregated and temporally disaggregated data," Journal of Econometrics, Elsevier, vol. 10(2), pages 243-252, June.
    5. Gelauff, G. M. M. & Harkema, R., 1977. "Estimating Quarterly Models With Partly Missing Quarterly Observations," Econometric Institute Archives 272160, Erasmus University Rotterdam.
    6. Christian Gourieroux & Alain Monfort, 1981. "On the Problem of Missing Data in Linear Models," Review of Economic Studies, Oxford University Press, vol. 48(4), pages 579-586.
    7. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    8. Sims, Christopher A, 1971. "Discrete Approximations to Continuous Time Distributed Lags in Econometrics," Econometrica, Econometric Society, vol. 39(3), pages 545-563, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. MOULIN, Laurent & SALTO, Matteo & SILVESTRINI, Andrea & VEREDAS, David, 2004. "Using intra annual information to forecast the annual state deficits : the case of France," LIDAM Discussion Papers CORE 2004048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    4. Andrea Silvestrini & Matteo Salto & Laurent Moulin & David Veredas, 2008. "Monitoring and forecasting annual public deficit every month: the case of France," Empirical Economics, Springer, vol. 34(3), pages 493-524, June.
    5. Thiago Carlomagno Carlo & Emerson Fernandes Marçal, 2016. "Forecasting Brazilian inflation by its aggregate and disaggregated data: a test of predictive power by forecast horizon," Applied Economics, Taylor & Francis Journals, vol. 48(50), pages 4846-4860, October.
    6. Alexandre Petkovic & David Veredas, 2009. "Aggregation of linear models for panel data," Working Papers ECARES 2009-012, ULB -- Universite Libre de Bruxelles.
    7. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    8. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    9. Daniel L. Millimet & Ian K. McDonough, 2017. "Dynamic Panel Data Models With Irregular Spacing: With an Application to Early Childhood Development," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 725-743, June.
    10. Peter Fuleky & Carl, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 2013-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    12. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    13. Jacobsen, Ben & Dannenburg, Dennis, 2003. "Volatility clustering in monthly stock returns," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 479-503, September.
    14. Santos Silva, J. M. C. & Cardoso, F. N., 2001. "The Chow-Lin method using dynamic models," Economic Modelling, Elsevier, vol. 18(2), pages 269-280, April.
    15. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    16. repec:hal:journl:peer-00815563 is not listed on IDEAS
    17. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    18. José Manuel Pavía, 2000. "Desagregación conjunta de series anuales: perturbaciones AR(1) multivariante," Investigaciones Economicas, Fundación SEPI, vol. 24(3), pages 727-737, September.
    19. Feijoo, Santiago Rodriguez & Caro, Alejandro Rodriguez & Quintana, Delia Davila, 2003. "Methods for quarterly disaggregation without indicators; a comparative study using simulation," Computational Statistics & Data Analysis, Elsevier, vol. 43(1), pages 63-78, May.
    20. Nijman, T.E. & Palm, F.C., 1987. "Predictive accuracy gain from disaggregate sampling in ARIMA-models," Other publications TiSEM 73cf32e2-d741-45a0-8b3e-f, Tilburg University, School of Economics and Management.
    21. Alejandro Rodríguez Caro & Santiago Rodríguez Feijoo & Delia Dávila Quintana, 2003. "La trimestralización de variables flujo. Un estudio de simulación de los métodos de desagregación temporal con indicador," Documentos de trabajo conjunto ULL-ULPGC 2003-01, Facultad de Ciencias Económicas de la ULPGC.
    22. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    23. Grammig, Joachim & Wellner, Marc, 1999. "Modeling the interdependence of volatility and inter-transaction duration processes," SFB 373 Discussion Papers 1999,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    24. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    25. Pierse, R. G. & Snell, A. J., 1995. "Temporal aggregation and the power of tests for a unit root," Journal of Econometrics, Elsevier, vol. 65(2), pages 333-345, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    2. Chih‐Nan Chen & Tsutomu Watanabe & Tomoyoshi Yabu, 2012. "A New Method for Identifying the Effects of Foreign Exchange Interventions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1507-1533, December.
    3. Qian, Hang, 2010. "Linear regression using both temporally aggregated and temporally disaggregated data: Revisited," MPRA Paper 32686, University Library of Munich, Germany.
    4. Qian, Hang, 2012. "Essays on statistical inference with imperfectly observed data," ISU General Staff Papers 201201010800003618, Iowa State University, Department of Economics.
    5. Eatzaz Ahmad, 1988. "Combining Yearly and Quarterly Data in Regression Analysis," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 27(4), pages 715-723.
    6. Alexandre Petkovic & David Veredas, 2009. "Aggregation of linear models for panel data," Working Papers ECARES 2009-012, ULB -- Universite Libre de Bruxelles.
    7. Ricardo Sanz, 1983. "Desagregación Temporal de Series Económicas," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 20(59), pages 85-100.
    8. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    9. Gelauff, G. M. M. & Harkema, R., 1977. "Estimating Quarterly Models With Partly Missing Quarterly Observations," Econometric Institute Archives 272160, Erasmus University Rotterdam.
    10. Christian Seiler, 2009. "Prediction Qualities of the Ifo Indicators on a Temporal Disaggregated German GDP," ifo Working Paper Series 67, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    11. Lars Peter Hansen & Thomas J. Sargent, 1982. "Formulating and estimating continuous time rational expectations models," Staff Report 75, Federal Reserve Bank of Minneapolis.
    12. Nijman, Th. & Palm, F.C., 1984. "Missing observations in a quarterly model for the aggregate labor market in the Netherlands," Serie Research Memoranda 0013, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    13. Justin Doran & Bernard Fingleton, 2014. "Economic shocks and growth: Spatio-temporal perspectives on Europe's economies in a time of crisis," Papers in Regional Science, Wiley Blackwell, vol. 93, pages 137-165, November.
    14. Rossana, Robert J., 1988. "Interrelated Demands for Buffer Stocks and Productive Inputs: Estimates for Two-Digit Manufacturing Industries," Department of Economics and Business - Archive 259428, North Carolina State University, Department of Economics.
    15. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    16. Imbens, Guido W. & Pizer, William A., 2000. "The Analysis of Randomized Experiments with Missing Data," Discussion Papers 10596, Resources for the Future.
    17. Victor Echevarria Icaza & Simón Sosvilla-Rivero, 2017. "Yields on sovereign debt, fragmentation and monetary policy transmission in the euro area: A GVAR approach," Working Papers 17-01, Asociación Española de Economía y Finanzas Internacionales.
    18. J.C.R. Rowley & D.A. Wilton, 1972. "Known Moving-Average Transformations and Autoregressive Processes," Working Paper 70, Economics Department, Queen's University.
    19. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    20. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:4d689d7c-4d89-4ab6-b8c3-f682bb444710. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.