IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Forecasting Aggregated Time Series Variables: A Survey

  • Helmut Lütkepohl

Aggregated times series variables can be forecasted in different ways. For example, they may be forecasted on the basis of the aggregate series or forecasts of disaggregated variables may be obtained fi rst and then these forecasts may be aggregated. A number of forecasts are presented and compared. Classical theoretical results on the relative effi ciencies of different forecasts are reviewed and some complications are discussed which invalidate the theoretical results. Contemporaneous as well as temporal aggregation are considered. JEL classifi cation : C22, C32 Key Words : Autoregressive moving-average process, contemporaneous aggregation, temporal aggregation, vector autoregressive moving-average process

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.1787/jbcma-2010-5km399r2jz9n
Download Restriction: Full text available to READ online. PDF download available to OECD iLibrary subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by OECD Publishing,Centre for International Research on Economic Tendency Surveys in its journal OECD Journal: Journal of Business Cycle Measurement and Analysis.

Volume (Year): 2010 (2010)
Issue (Month): 2 ()
Pages: 1-26

as
in new window

Handle: RePEc:oec:stdkab:5km399r2jz9n
Contact details of provider: Postal: 2 rue Andre Pascal, 75775 Paris Cedex 16
Phone: 33-(0)-1-45 24 82 00
Fax: 33-(0)-1-45 24 85 00
Web page: http://www.oecd.orgEmail:


More information through EDIRC

Order Information: Web: http://www.oecd.org/bookshop?19952899

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
  2. Lutkepohl, Helmut, 1986. "Forecasting Vector ARMA Processes with Systematically Missing Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(3), pages 375-90, July.
  3. Yamamoto, Taku, 1980. "On the Treatment of Autocorrelated Errors in the Multiperiod Prediction of Dynamic Simultaneous Equation Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(3), pages 735-48, October.
  4. Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: a survey," ULB Institutional Repository 2013/136205, ULB -- Universite Libre de Bruxelles.
  5. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.
  6. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
  7. Ralf Brüggemann & Helmut Lütkepohl & Massimiliano Marcellino, 2008. "Forecasting euro area variables with German pre-EMU data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 465-481.
  8. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
  9. Hubrich, Kirstin, 2003. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Working Paper Series 0247, European Central Bank.
  10. Palm, F.C. & Nijman, Th., 1982. "Missing observations in the dynamic regression model," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  11. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
  12. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, Elsevier.
  13. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  14. Heather Anderson & Mardi Dungey & Denise Osborn & Farshid Vahid, 2007. "Constructing Historical Euro Area Data," Money Macro and Finance (MMF) Research Group Conference 2006 99, Money Macro and Finance Research Group.
  15. Evan Koenig & Sheila Dolmas & Jeremy M. Piger, 2002. "The use and abuse of 'real-time' data in economic forecasting," Working Papers 2001-015, Federal Reserve Bank of St. Louis.
  16. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
  17. David Hendry & Jurgen Doornik, 2000. "Constructing Historical Euro-Zone Data," Economics Series Working Papers 4, University of Oxford, Department of Economics.
  18. Helmut Lütkepohl & Ralf Brüggemann, 2006. "A small monetary system for the euro area based on German data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 683-702.
  19. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non-linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300.
  20. Stock, James H, 1996. "VAR, Error Correction and Pretest Forecasts at Long Horizons," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 685-701, November.
  21. SBRANA, Giacomo & SILVESTRINI, Andrea, 2009. "What do we know about comparing aggregate and disaggregate forecasts?," CORE Discussion Papers 2009020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  22. Tiao, G. C. & Guttman, Irwin, 1980. "Forecasting contemporal aggregates of multiple time series," Journal of Econometrics, Elsevier, vol. 12(2), pages 219-230, February.
  23. Reinsel, Gregory C. & Lewis, Richard A., 1987. "Prediction mean square error for non-stationary multivariate time series using estimated parameters," Economics Letters, Elsevier, vol. 24(1), pages 57-61.
  24. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
  25. Angelini, Elena & Marcellino, Massimiliano, 2007. "Econometric analyses with backdated data: unified Germany and the euro area," Working Paper Series 0752, European Central Bank.
  26. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
  27. Bosker, E.M., 2006. "On the aggregation of eurozone data," Economics Letters, Elsevier, vol. 90(2), pages 260-265, February.
  28. Hoque, Asraul & Magnus, Jan R. & Pesaran, Bahram, 1988. "The exact multi-period mean-square forecast error for the first-order autoregressive model," Journal of Econometrics, Elsevier, vol. 39(3), pages 327-346, November.
  29. Ralf Brueggemann & Helmut Luetkepohl, 2005. "Uncovered Interest Rate Parity and the Expectations Hypothesis of the Term Structure: Empirical Results for the U.S. and Europe," Economics Working Papers ECO2005/08, European University Institute.
  30. repec:ner:tilbur:urn:nbn:nl:ui:12-153295 is not listed on IDEAS
  31. William W. S. Wei, 1978. "Some Consequences of Temporal Aggregation in Seasonal Time Series Models," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 433-448 National Bureau of Economic Research, Inc.
  32. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-36, January.
  33. Andreas Beyer & Katarina Juselius, 2008. "Does it Matter How to Measure Aggregates? The Case of Monetary Transmission Mechanisms in the Euro Area," Discussion Papers 08-07, University of Copenhagen. Department of Economics.
  34. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
  35. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
  36. Lutkepohl, Helmut, 1981. "A model for non-negative and non-positive distributed lag functions," Journal of Econometrics, Elsevier, vol. 16(2), pages 211-219, June.
  37. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
  38. Brewer, K. R. W., 1973. "Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models," Journal of Econometrics, Elsevier, vol. 1(2), pages 133-154, June.
  39. Kemp, Gordon C.R., 1999. "The Behavior Of Forecast Errors From A Nearly Integrated Ar(1) Model As Both Sample Size And Forecast Horizon Become Large," Econometric Theory, Cambridge University Press, vol. 15(02), pages 238-256, April.
  40. Víctor Gómez & Félix Aparicio-Pérez, 2009. "A new state-space methodology to disaggregate multivariate time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 97-124, 01.
  41. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
  42. Baillie, Richard T, 1981. "Prediction from the Dynamic Simultaneous Equation Model with Vector Autoregressive Errors," Econometrica, Econometric Society, vol. 49(5), pages 1331-37, September.
  43. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, 07.
  44. Lutkepohl, Helmut, 1985. "The joint asymptotic distribution of multistep prediction errors of estimated vector autoregressions," Economics Letters, Elsevier, vol. 17(1-2), pages 103-106.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oec:stdkab:5km399r2jz9n. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.