IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?

  • Laurent Ferrara
  • Clément Marsilli
  • Juan-Pablo Ortega

The Great Recession endured by the main industrialized countries during the period 2008-2009, in the wake of the financial and banking crisis, has pointed out the major role of the financial sector on macroeconomic fluctuations. In this paper, we reconsider macrofinancial linkages by assessing the leading role of the daily volatility of two major financial variables, namely commodity and stock prices, in their ability to anticipate US GDP growth. For this purpose, an extended MIDAS model is proposedthat allows the forecasting of the quarterly growth rate using exogenous variables sampled at various higher frequencies. Empirical results show that using both daily financial volatilities and monthly industrial production is helpful at the time of predicting quarterly GDP growth over the Great Recession period.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://economix.fr/pdf/dt/2013/WP_EcoX_2013-19.pdf
Download Restriction: no

Paper provided by University of Paris West - Nanterre la Défense, EconomiX in its series EconomiX Working Papers with number 2013-19.

as
in new window

Length: 14 pages
Date of creation: 2013
Date of revision:
Handle: RePEc:drm:wpaper:2013-19
Contact details of provider: Postal: 200 Avenue de la République, Bât. G - 92001 Nanterre Cedex
Web page: http://economix.fr
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Eun Ahn & Jin Man Lee, 2006. "Volatility relationship between stock performance and real output," Applied Financial Economics, Taylor & Francis Journals, vol. 16(11), pages 777-784.
  2. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-93, Sept.-Oct.
  3. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  4. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-24, September.
  5. Helmut Luetkepohl, 2009. "Forecasting Aggregated Time Series Variables: A Survey," Economics Working Papers ECO2009/17, European University Institute.
  6. Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2010. "What does financial volatility tell us about macroeconomic fluctuations?," MPRA Paper 34104, University Library of Munich, Germany, revised Jun 2011.
  7. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14, pages C25-C44, 02.
  8. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  9. Laurent Ferrara & Clément Marsilli, 2012. "Financial variables as leading indicators of GDP growth: Evidence from a MIDAS approach during the Great Recession," EconomiX Working Papers 2012-19, University of Paris West - Nanterre la Défense, EconomiX.
  10. Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
  11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  12. Guillaume Chevillon, 2005. "Direct multi-step estimation and forecasting," Documents de Travail de l'OFCE 2005-10, Observatoire Francais des Conjonctures Economiques (OFCE).
  13. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, School of Economics and Management, University of Aarhus.
  14. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, 08.
  15. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
  16. Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
  17. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  18. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  19. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages C1-C32, November.
  20. Claessens, Stijn & Kose, Ayhan & Terrones, Marco E, 2011. "How Do Business and Financial Cycles Interact?," CEPR Discussion Papers 8396, C.E.P.R. Discussion Papers.
  21. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  22. James D. Hamilton, 2000. "What is an Oil Shock?," NBER Working Papers 7755, National Bureau of Economic Research, Inc.
  23. Anna Creti & Marc Joëts & Valérie Mignon, 2012. "On the links between stock and commodity markets' volatility," EconomiX Working Papers 2012-42, University of Paris West - Nanterre la Défense, EconomiX.
  24. Charles, Amelie & Darne, Olivier, 2005. "Outliers and GARCH models in financial data," Economics Letters, Elsevier, vol. 86(3), pages 347-352, March.
  25. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
  26. repec:bla:buecrs:v:64:y:2012:i::p:s53-s70 is not listed on IDEAS
  27. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  28. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
  29. Karim Barhoumi & Olivier Darné & Laurent Ferrara & Bertrand Pluyaud, 2012. "Monthly Gdp Forecasting Using Bridge Models: Application For The French Economy," Bulletin of Economic Research, Wiley Blackwell, vol. 64(Supplemen), pages s53-s70, December.
  30. Carnero, M. Angeles & Peña, Daniel & Ruiz, Esther, 2012. "Estimating GARCH volatility in the presence of outliers," Economics Letters, Elsevier, vol. 114(1), pages 86-90.
  31. Bellégo, C. & Ferrara, L., 2012. "Macro-financial linkages and business cycles: A factor-augmented probit approach," Economic Modelling, Elsevier, vol. 29(5), pages 1793-1797.
  32. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:drm:wpaper:2013-19. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Valérie Mignon)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.