News media vs. FRED-MD for macroeconomic forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
References listed on IDEAS
- Vegard Høghaug Larsen & Leif Anders Thorsrud, 2022.
"Asset returns, news topics, and media effects,"
Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 838-868, July.
- Vegard H. Larsen & Leif Anders Thorsrud, 2017. "Asset returns, news topics, and media effects," Working Paper 2017/17, Norges Bank.
- Stephen Hansen & Michael McMahon, 2016.
"Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication,"
NBER Chapters, in: NBER International Seminar on Macroeconomics 2015,
National Bureau of Economic Research, Inc.
- Hansen, Stephen & McMahon, Michael, 2016. "Shocking language: Understanding the macroeconomic effects of central bank communication," Journal of International Economics, Elsevier, vol. 99(S1), pages 114-133.
- Hansen, Stephen & McMahon, Michael, 2015. "Shocking language: Understanding the macroeconomic effects of central bank communication," CAGE Online Working Paper Series 258, Competitive Advantage in the Global Economy (CAGE).
- Stephen Hansen & Michael McMahon, 2016. "Shocking language: understanding the macroeconomic effects of central bank communication," CAMA Working Papers 2016-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hansen, Stephen & McMahon, Michael, 2015. "Shocking language: Understanding the macroeconomic effects of central bank communication," LSE Research Online Documents on Economics 86247, London School of Economics and Political Science, LSE Library.
- Stephen Hansen & Michael McMahon, 2015. "Shocking Language: Understanding the macroeconomic effects of central bank communication," Discussion Papers 1537, Centre for Macroeconomics (CFM).
- Hansen, Stephen & McMahon, Michael, 2015. "Shocking language: Understanding the macroeconomic effects of central bank communication," Economic Research Papers 269727, University of Warwick - Department of Economics.
- McMahon, Michael & Hansen, Stephen, 2015. "Shocking language: Understanding the macroeconomic effects of central bank communication," CEPR Discussion Papers 11018, C.E.P.R. Discussion Papers.
- Hansen, Stephen & McMahon, Michael, 2015. "Shocking language: Understanding the macroeconomic effects of central bank communication," The Warwick Economics Research Paper Series (TWERPS) 1098, University of Warwick, Department of Economics.
- Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
- Vegard H. Larsen & Leif Anders Thorsrud, 2018.
"Business cycle narratives,"
Working Paper
2018/3, Norges Bank.
- Vegard H. Larsen & Leif Anders Thorsrud, 2019. "Business Cycle Narratives," CESifo Working Paper Series 7468, CESifo.
- Dirk Ulbricht & Konstantin A. Kholodilin & Tobias Thomas, 2017.
"Do Media Data Help to Predict German Industrial Production?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 483-496, August.
- Konstantin A. Kholodilin & Tobias Thomas & Dirk Ulbricht, 2014. "Do Media Data Help to Predict German Industrial Production?," Discussion Papers of DIW Berlin 1393, DIW Berlin, German Institute for Economic Research.
- Kholodilin, Konstantin A. & Thomas, Tobias & Ulbricht, Dirk, 2014. "Do media data help to predict German industrial production?," DICE Discussion Papers 149, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Stark, Tom & Croushore, Dean, 2002.
"Forecasting with a real-time data set for macroeconomists,"
Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
- Dean Croushore & Tom Stark, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
- Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
- Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022.
"Making text count: Economic forecasting using newspaper text,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
- Kalamara, Eleni & Turrell, Arthur & Redl, Chris & Kapetanios, George & Kapadia, Sujit, 2020. "Making text count: economic forecasting using newspaper text," Bank of England working papers 865, Bank of England.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Vegard Høghaug Larsen, 2021.
"Components Of Uncertainty,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 769-788, May.
- Vegard Høghaug Larsen, 2017. "Components of uncertainty," Working Paper 2017/5, Norges Bank.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2018.
"Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
- Stephen Eliot Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and deliberation within the FOMC: A computational linguistics approach," Economics Working Papers 1425, Department of Economics and Business, Universitat Pompeu Fabra.
- Hansen, Stephen & McMahon, Michael & Prat, Andrea, 2014. "Transparency and deliberation within the FOMC: a computational linguistics approach," LSE Research Online Documents on Economics 58072, London School of Economics and Political Science, LSE Library.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and Deliberation within the FOMC: A Computational Linguistics Approach," CEP Discussion Papers dp1276, Centre for Economic Performance, LSE.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and Deliberation within the FOMC: a Computational Linguistics Approach," Working Papers 762, Barcelona School of Economics.
- Prat, Andrea & McMahon, Michael & Hansen, Stephen, 2014. "Transparency and Deliberation within the FOMC: a Computational Linguistics Approach," CEPR Discussion Papers 9994, C.E.P.R. Discussion Papers.
- Hansen, Stephen & McMahon, Michael & Prat, Andrea, 2014. "Transparency and deliberation within the FOMC: a computational linguistics approach," LSE Research Online Documents on Economics 60287, London School of Economics and Political Science, LSE Library.
- Stephen Hansen & Michael McMahon & Andrea Prat, 2014. "Transparency and Deliberation within the FOMC: a Computational Linguistics Approach," Discussion Papers 1411, Centre for Macroeconomics (CFM).
- Croushore, Dean & Stark, Tom, 2001.
"A real-time data set for macroeconomists,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
- Nimark, Kristoffer P. & Pitschner, Stefan, 2019. "News media and delegated information choice," Journal of Economic Theory, Elsevier, vol. 181(C), pages 160-196.
- James H. Stock & Mark W. Watson, 1989.
"New Indexes of Coincident and Leading Economic Indicators,"
NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409,
National Bureau of Economic Research, Inc.
- Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
- Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Dybowski, T.P. & Adämmer, P., 2018. "The economic effects of U.S. presidential tax communication: Evidence from a correlated topic model," European Journal of Political Economy, Elsevier, vol. 55(C), pages 511-525.
- Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021.
"News-driven inflation expectations and information rigidities,"
Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
- Vegard H. Larsen & Leif Anders Thorsrud & Julia Zhulanova, 2019. "News-driven inflation expectations and information rigidities," Working Paper 2019/5, Norges Bank.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
CIRANO Working Papers
2004s-20, CIRANO.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Christopher D. Carroll, 2003.
"Macroeconomic Expectations of Households and Professional Forecasters,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
- Christopher D Carroll, 2002. "Macroeconomic Expectations of Households and Professional Forecasters," Economics Working Paper Archive 477, The Johns Hopkins University,Department of Economics.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- repec:bny:wpaper:0053 is not listed on IDEAS
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- repec:bny:wpaper:0054 is not listed on IDEAS
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
- Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
- repec:bny:wpaper:0064 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dooruj Rambaccussing & Craig Menzies & Andrzej Kwiatkowski, 2022. "Look who’s Talking: Individual Committee members’ impact on inflation expectations," Dundee Discussion Papers in Economics 305, Economic Studies, University of Dundee.
- Blagov, Boris & Müller, Henrik & Jentsch, Carsten & Schmidt, Torsten, 2021. "The investment narrative: Improving private investment forecasts with media data," Ruhr Economic Papers 921, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Aromi, J. Daniel & Clements, Adam, 2021. "Facial expressions and the business cycle," Economic Modelling, Elsevier, vol. 102(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:bny:wpaper:0091 is not listed on IDEAS
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
- repec:bny:wpaper:0046 is not listed on IDEAS
- Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
- Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- repec:bny:wpaper:0075 is not listed on IDEAS
- Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Bec, Frédérique & Mogliani, Matteo, 2015.
"Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
- Bec, F. & Mogliani, M., 2013. "Nowcasting French GDP in Real-Time from Survey Opinions: Information or Forecast Combinations?," Working papers 436, Banque de France.
- Frédérique Bec & Matteo Mogliani, 2013. "Nowcasting French GDP in Real-Time from Survey Opinions : Information or Forecast Combinations ?," Working Papers 2013-21, Center for Research in Economics and Statistics.
- Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012.
"Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data),"
Research Memorandum
021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
- Aastveit, Knut Are & Trovik, Tørres, 2014.
"Estimating the output gap in real time: A factor model approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
- Knut Are Aastveit & Tørres G. Trovik, 2008. "Estimating the output gap in real time: A factor model approach," Working Paper 2008/23, Norges Bank.
- repec:bny:wpaper:0021 is not listed on IDEAS
- Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
- Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
- Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Rusnák, Marek, 2016.
"Nowcasting Czech GDP in real time,"
Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
- Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank.
More about this item
Keywords
forecasting; real-time; machine learning; news; text data;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-04-05 (Big Data)
- NEP-CMP-2021-04-05 (Computational Economics)
- NEP-MAC-2021-04-05 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2020_14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nbgovno.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.