IDEAS home Printed from https://ideas.repec.org/p/bny/wpaper/0064.html
   My bibliography  Save this paper

Business cycle narratives

Author

Listed:
  • Vegard Høghaug Larsen

    ()

  • Leif Anders Thorsrud

    ()

Abstract

This article quantifies the epidemiology of media narratives relevant to business cycles in the US, Japan, and Europe (euro area). We do so by first constructing daily business cycle indexes computed on the basis of the news topics the media writes about. At a broad level, the most in uential news narratives are shown to be associated with general macroeconomic developments, finance, and (geo-)politics. However, a large set of narratives contributes to our index estimates across time, especially in times of expansion. In times of trouble, narratives associated with economic uctuations become more sparse. Likewise, we show that narratives do go viral, but mostly so when growth is low. While narratives interact in complicated ways, we document that some are clearly associated with economic fundamentals. Other narratives, on the other hand, show no such relationship, and are likely better explained by classical work capturing the market's animal spirits.

Suggested Citation

  • Vegard Høghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  • Handle: RePEc:bny:wpaper:0064
    as

    Download full text from publisher

    File URL: https://brage.bibsys.no/xmlui/bitstream/handle/11250/2492713/WP_CAMP_6_2018.pdf?sequence=1&isAllowed=y
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    2. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    3. Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2017. "Measuring News Sentiment," Working Paper Series 2017-1, Federal Reserve Bank of San Francisco.
    4. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    5. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    6. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    7. Matthew Gentzkow & Jesse M. Shapiro, 2010. "What Drives Media Slant? Evidence From U.S. Daily Newspapers," Econometrica, Econometric Society, vol. 78(1), pages 35-71, January.
    8. Vegard H. Larsen & Leif Anders Thorsrud, 2015. "The Value of News," Working Papers No 6/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    9. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    10. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    11. Olivier J. Blanchard & Jean-Paul L'Huillier & Guido Lorenzoni, 2013. "News, Noise, and Fluctuations: An Empirical Exploration," American Economic Review, American Economic Association, vol. 103(7), pages 3045-3070, December.
    12. Bai, Jushan & Wang, Peng, 2014. "Identification theory for high dimensional static and dynamic factor models," Journal of Econometrics, Elsevier, vol. 178(2), pages 794-804.
    13. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    14. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    15. M. Ayhan Kose & Csilla Lakatos & Franziska Ohnsorge & Marc Stocker, 2017. "The Global Role of the U.S. Economy: Linkages, Policies and Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1706, Koc University-TUSIAD Economic Research Forum.
    16. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    17. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    18. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    19. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    20. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    21. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, edition 1, number 33.
    22. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    23. Pietro Battiston & Luca Stanca, 2014. "Boundedly Rational Opinion Dynamics in Directed Social Networks: Theory and Experimental Evidence," Working Papers 267, University of Milano-Bicocca, Department of Economics, revised Jan 2014.
    24. repec:cup:cbooks:9781108447379 is not listed on IDEAS
    25. Paul Beaudry & Franck Portier, 2006. "Stock Prices, News, and Economic Fluctuations," American Economic Review, American Economic Association, vol. 96(4), pages 1293-1307, September.
    26. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    27. Joel Peress, 2014. "The Media and the Diffusion of Information in Financial Markets: Evidence from Newspaper Strikes," Journal of Finance, American Finance Association, vol. 69(5), pages 2007-2043, October.
    28. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    29. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 131(4), pages 1593-1636.
    30. Matthew Gentzkow & Jesse M. Shapiro & Michael Sinkinson, 2011. "The Effect of Newspaper Entry and Exit on Electoral Politics," American Economic Review, American Economic Association, vol. 101(7), pages 2980-3018, December.
    31. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    32. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, March.
    33. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    34. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, Elsevier.
    35. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 133(2), pages 801-870.
    36. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    37. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    38. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    39. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
    40. repec:aea:aejmac:v:9:y:2017:i:4:p:122-52 is not listed on IDEAS
    41. Forni, Mario & Gambetti, Luca & Lippi, Marco & Sala, Luca, 2013. "Noisy News in Business cycles," CEPR Discussion Papers 9601, C.E.P.R. Discussion Papers.
    42. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    43. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    44. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    45. Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Paper 2016/21, Norges Bank.
    46. Haroon Mumtaz & Saverio Simonelli & Paolo Surico, 2011. "International Comovements, Business Cycle and Inflation: a Historical Perspective," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 176-198, January.
    47. Sims, Christopher A. & Zha, Tao, 2006. "Does Monetary Policy Generate Recessions?," Macroeconomic Dynamics, Cambridge University Press, vol. 10(02), pages 231-272, April.
    48. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters,in: Economic Analysis of the Digital Economy, pages 119-135 National Bureau of Economic Research, Inc.
    49. Casey Dougal & Joseph Engelberg & Diego García & Christopher A. Parsons, 2012. "Journalists and the Stock Market," Review of Financial Studies, Society for Financial Studies, vol. 25(3), pages 639-679.
    50. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    51. repec:eee:macchp:v2-71 is not listed on IDEAS
    52. Koopman, Siem Jan & Harvey, Andrew, 2003. "Computing observation weights for signal extraction and filtering," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1317-1333, May.
    53. Vegard Høghaug Larsen & Leif Anders Thorsrud, 2017. "Asset returns, news topics, and media effects," Working Papers No 5/2017, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    54. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    55. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    56. James H. Stock & Mark W. Watson, 2005. "Understanding Changes In International Business Cycle Dynamics," Journal of the European Economic Association, MIT Press, vol. 3(5), pages 968-1006, September.
    57. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 269-298.
    58. Nimark, Kristoffer P & Pitschner, Stefan, 2016. "Delegated information choice," CEPR Discussion Papers 11323, C.E.P.R. Discussion Papers.
    59. Bisin, Alberto & Verdier, Thierry, 2001. "The Economics of Cultural Transmission and the Dynamics of Preferences," Journal of Economic Theory, Elsevier, vol. 97(2), pages 298-319, April.
    60. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, Elsevier.
    61. James D. Hamilton, 1985. "Historical Causes of Postwar Oil Shocks and Recessions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 97-116.
    62. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    63. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    64. repec:wly:jforec:v:36:y:2017:i:5:p:497-514 is not listed on IDEAS
    65. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    66. repec:eee:econom:v:210:y:2019:i:1:p:203-218 is not listed on IDEAS
    67. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vegard H. Larsen & Leif Anders Thorsrud & Julia Zhulanova, 2019. "News-driven inflation expectations and information rigidities," Working Papers No 03/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Keiichi Goshima & Hiroshi Ishijima & Mototsugu Shintani & Hiroki Yamamoto, 2019. "Forecasting Japanese inflation with a news-based leading indicator of economic activities," CARF F-Series CARF-F-458, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    Keywords

    Business cycles; Narratives; Dynamic Factor Model (DFM); Latent Dirichlet Allocation (LDA);

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E71 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on the Macro Economy
    • N10 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - General, International, or Comparative

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bny:wpaper:0064. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helene Olsen). General contact details of provider: http://edirc.repec.org/data/cambino.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.