IDEAS home Printed from https://ideas.repec.org/p/bno/worpap/2016_21.html
   My bibliography  Save this paper

Words are the new numbers: A newsy coincident index of business cycles

Author

Abstract

I construct a daily business cycle index based on quarterly GDP and textual information contained in a daily business newspaper. The newspaper data are decomposed into time series representing newspaper topics using a Latent Dirichlet Allocation model. The business cycle index is estimated using the newspaper topics and a time-varying Dynamic Factor Model where dynamic sparsity is enforced upon the factor loadings using a latent threshold mechanism. The resulting index is shown to be not only more timely but also more accurate than commonly used alternative business cycle indicators. Moreover, the derived index provides the index user with broad based high frequent information about the type of news that drive or reflect economic fluctuations.

Suggested Citation

  • Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Paper 2016/21, Norges Bank.
  • Handle: RePEc:bno:worpap:2016_21
    as

    Download full text from publisher

    File URL: http://www.norges-bank.no/en/Published/Papers/Working-Papers/2016/212016/
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. N. Bloom., 2016. "Fluctuations in uncertainty," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 4.
    2. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    3. Vegard H. Larsen & Leif Anders Thorsrud, 2015. "The Value of News," Working Papers No 6/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    4. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    5. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    6. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    7. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    8. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 133(2), pages 801-870.
    9. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    10. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    11. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    12. Bai, Jushan & Wang, Peng, 2012. "Identification and estimation of dynamic factor models," MPRA Paper 38434, University Library of Munich, Germany.
    13. Colin Ellis & Haroon Mumtaz & Pawel Zabczyk, 2014. "What Lies Beneath? A Time‐varying FAVAR Model for the UK Transmission Mechanism," Economic Journal, Royal Economic Society, vol. 0(576), pages 668-699, May.
    14. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    15. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    16. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    17. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    18. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    19. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    20. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    21. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    22. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters,in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1 National Bureau of Economic Research, Inc.
    23. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    24. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    25. Paul Beaudry & Deokwoo Nam & Jian Wang, 2011. "Do Mood Swings Drive Business Cycles and is it Rational?," NBER Working Papers 17651, National Bureau of Economic Research, Inc.
    26. repec:wly:jforec:v:36:y:2017:i:5:p:497-514 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vegard Høghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Vegard H. Larsen & Leif Anders Thorsrud, 2017. "Asset returns, news topics, and media effects," Working Paper 2017/17, Norges Bank.
    3. Lino Wehrheim, 2017. "Economic History Goes Digital: Topic Modeling the Journal of Economic History," Working Papers 177, Bavarian Graduate Program in Economics (BGPE).
    4. repec:bkr:journl:v:77:y:2018:i:4:p:26-41 is not listed on IDEAS

    More about this item

    Keywords

    Business cycles; Dynamic Factor Model; Latent Dirichlet Allocation (LDA);

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2016_21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nbgovno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.