IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A survey of econometric methods for mixed-frequency data

  • Claudia Foroni
  • Massimiliano Marcellino

The development of models for variables sampled at different frequencies has attracted substantial interest in the recent econometric literature. In this paper we provide an overview of the most common techniques, including bridge equations, MIxed DAta Sampling (MIDAS) models, mixed frequency VARs, and mixed frequency factor models. We also consider alternative techniques for handling the ragged edge of the data, due to asynchronous publication. Finally, we survey the main empirical applications based on alternative mixed frequency models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cadmus.eui.eu/bitstream/handle/1814/25844/ECO_2013_02.pdf
File Function: main text
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2013/02.

as
in new window

Length:
Date of creation: 2013
Date of revision:
Handle: RePEc:eui:euiwps:eco2013/02
Contact details of provider: Postal: Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy
Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers 0003, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  2. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages C25-C44, February.
  3. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
  4. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  5. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, . "Survey Data as Coincident or Leading Indicators," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
  6. Maximo Camacho & Gabriel Perez-Quiros, 2008. "Introducing the EURO-STING: Short Term INdicator of Euro Area Growth," Banco de Espa�a Working Papers 0807, Banco de Espa�a.
  7. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
  8. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  9. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
  10. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2000. "The use and abuse of "real-time" data in economic forecasting," International Finance Discussion Papers 684, Board of Governors of the Federal Reserve System (U.S.).
  11. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
  12. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
  13. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  14. repec:bla:buecrs:v:64:y:2012:i::p:s53-s70 is not listed on IDEAS
  15. Martin D.D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macro Economy," NBER Working Papers 11064, National Bureau of Economic Research, Inc.
  16. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, 01.
  17. Marcellino, Massimiliano & Porqueddu, Mario & Venditti, Fabrizio, 2013. "Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility," CEPR Discussion Papers 9334, C.E.P.R. Discussion Papers.
  18. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  19. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  20. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
  21. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
  22. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(01), pages 108-124, April.
  23. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  24. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  25. Banbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
  26. Domenico Giannone & Lucrezia Reichlin & David Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
  27. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
  28. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  29. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  30. Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
  31. repec:eui:euiwps:eco2011/03 is not listed on IDEAS
  32. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
  33. Angelini, Elena & Henry, Jérôme & Marcellino, Massimiliano, 2003. "Interpolation and backdating with a large information set," Working Paper Series 0252, European Central Bank.
  34. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
  35. Wohlrabe, Klaus, 2009. "Forecasting with mixed-frequency time series models," Munich Dissertations in Economics 9681, University of Munich, Department of Economics.
  36. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  37. Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
  38. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, 02.
  39. Karim Barhoumi & Olivier Darné & Laurent Ferrara & Bertrand Pluyaud, 2012. "Monthly Gdp Forecasting Using Bridge Models: Application For The French Economy," Bulletin of Economic Research, Wiley Blackwell, vol. 64(Supplemen), pages s53-s70, December.
  40. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  41. Paul Viefers, 2011. "Bayesian Inference for the Mixed-Frequency VAR Model," Discussion Papers of DIW Berlin 1172, DIW Berlin, German Institute for Economic Research.
  42. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2011. "EUROMIND: a monthly indicator of the euro area economic conditions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 439-470, 04.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2013/02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rhoda Lane)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.