IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/8234.html
   My bibliography  Save this paper

Markov-switching MIDAS models

Author

Listed:
  • Guérin, Pierre
  • Marcellino, Massimiliano

Abstract

This paper introduces a new regression model - Markov-switching mixed data sampling (MS-MIDAS) - that incorporates regime changes in the parameters of the mixed data sampling (MIDAS) models and allows for the use of mixed-frequency data in Markov-switching models. After a discussion of estimation and inference for MS-MIDAS, and a small sample simulation based evaluation, the MS-MIDAS model is applied to the prediction of the US and UK economic activity, in terms both of quantitative forecasts of the aggregate economic activity and of the prediction of the business cycle regimes. Both simulation and empirical results indicate that MSMIDAS is a very useful specification.

Suggested Citation

  • Guérin, Pierre & Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:8234
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=8234
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    4. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    5. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    6. Marine Carrasco & Liang Hu, 2004. "Optimal test for Markov switching," 2004 Meeting Papers 374, Society for Economic Dynamics.
    7. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    8. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    9. Galbraith, John W. & Tkacz, Greg, 2000. "Testing for asymmetry in the link between the yield spread and output in the G-7 countries," Journal of International Money and Finance, Elsevier, vol. 19(5), pages 657-672, October.
    10. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    11. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    12. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    15. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    16. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    17. Driffill John & Kenc Turalay & Sola Martin & Spagnolo Fabio, 2009. "The Effects of Different Parameterizations of Markov-Switching in a CIR Model of Bond Pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    18. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    19. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    20. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    21. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    22. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    23. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    24. Zacharias Psaradakis & Nicola Spagnolo, 2006. "Joint Determination of the State Dimension and Autoregressive Order for Models with Markov Regime Switching," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 753-766, September.
    25. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Casarin & Claudia Foroni & Massimiliano Marcellino & Francesco Ravazzolo, 2016. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," Working Papers 585, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    2. Michael Funke & Aaron Mehrotra & Hao Yu, 2015. "Tracking Chinese CPI inflation in real time," Empirical Economics, Springer, vol. 48(4), pages 1619-1641, June.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    4. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    5. repec:eee:ecolet:v:157:y:2017:i:c:p:45-49 is not listed on IDEAS
    6. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, Elsevier.
    7. repec:eee:empfin:v:43:y:2017:i:c:p:130-142 is not listed on IDEAS
    8. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    9. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    10. Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
    11. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    12. Ghysels, Eric & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Regime switches in the risk–return trade-off," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 118-138.
    13. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
    14. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    15. Di Caro, Paolo, 2014. "Regional recessions and recoveries in theory and practice: a resilience-based overview," MPRA Paper 60300, University Library of Munich, Germany.
    16. Schumacher, Christian, 2014. "MIDAS regressions with time-varying parameters: An application to corporate bond spreads and GDP in the Euro area," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100289, Verein für Socialpolitik / German Economic Association.
    17. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.
    18. de Bruijn, L.P. & Franses, Ph.H.B.F., 2015. "Stochastic levels and duration dependence in US unemployment," Econometric Institute Research Papers EI2015-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    20. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    21. Pierre Guerin & Danilo Leiva-Leon & Massimiliano Marcellino, 2016. "Markov-Switching Three-Pass Regression Filter," Working Papers 591, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    22. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
    23. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    24. repec:eee:revfin:v:34:y:2017:i:c:p:86-98 is not listed on IDEAS

    More about this item

    Keywords

    business cycle; forecasting; mixed-frequency data; non-linear models; nowcasting;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:8234. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.