Nowcasting East German GDP growth: a MIDAS approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-019-01810-5
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
References listed on IDEAS
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Henzel Steffen R. & Wohlrabe Klaus & Lehmann Robert, 2015.
"Nowcasting Regional GDP: The Case of the Free State of Saxony,"
Review of Economics, De Gruyter, vol. 66(1), pages 71-98, April.
- Steffen Henzel & Robert Lehmann & Klaus Wohlrabe, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," CESifo Working Paper Series 5336, CESifo.
- Henzel, Steffen & Lehmann, Robert & Wohlrabe, Klaus, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," MPRA Paper 63714, University Library of Munich, Germany.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Daniela Bragoli & Jack Fosten, 2018.
"Nowcasting Indian GDP,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 259-282, April.
- Daniela Bragoli & Jack Fosten, 2016. "Nowcasting Indian GDP," University of East Anglia School of Economics Working Paper Series 2016-06, School of Economics, University of East Anglia, Norwich, UK..
- Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
- Robert Lehmann & Klaus Wohlrabe, 2017.
"Boosting and regional economic forecasting: the case of Germany,"
Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
- Robert Lehmann & Klaus Wohlrabe, 2016. "Boosting and Regional Economic Forecasting: The Case of Germany," CESifo Working Paper Series 6157, CESifo.
- Lehmann, Robert & Wohlrabe, Klaus, 2017. "Boosting and regional economic forecasting: the case of Germany," Munich Reprints in Economics 49919, University of Munich, Department of Economics.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Dr. Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Gießler Stefan & Heinisch Katja & Holtemöller Oliver, 2021.
"(Since When) Are East and West German Business Cycles Synchronised?,"
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 241(1), pages 1-28, February.
- Gießler, Stefan & Heinisch, Katja & Holtemöller, Oliver, 2020. "(Since When) Are East and West German Business Cycles Synchronised?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Ahead of , pages 1-28.
- Gießler, Stefan & Heinisch, Katja & Holtemöller, Oliver, 2019. "(Since when) Are East and West German business cycles synchronised?," IWH Discussion Papers 7/2019, Halle Institute for Economic Research (IWH).
- Lehmann Robert & Wohlrabe Klaus, 2015.
"Forecasting GDP at the Regional Level with Many Predictors,"
German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
- Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
- Robert Lehmann & Klaus Wohlrabe, 2012. "Forecasting GDP at the Regional Level with Many Predictors," CESifo Working Paper Series 3956, CESifo.
- Robert Lehmann & Klaus Wohlrabe, 2013. "Forecasting GDP at the regional level with many predictors," ERSA conference papers ersa13p15, European Regional Science Association.
- Lehmann, Robert & Wohlrabe, Klaus, 2013. "Forecasting GDP at the regional level with many predictors," Discussion Papers in Economics 17104, University of Munich, Department of Economics.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Chow, Gregory C & Lin, An-loh, 1971.
"Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series,"
The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
- Tom Doan, "undated". "CHOWLIN: RATS procedure to distribute a series to a higher frequency using related series," Statistical Software Components RTS00036, Boston College Department of Economics.
- Tom Doan, "undated". "DISAGGREGATE: RATS procedure to implement general disaggregation (interpolation/distribution) procedure," Statistical Software Components RTS00050, Boston College Department of Economics.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Francis X. Diebold, 2015.
"Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," PIER Working Paper Archive 12-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," NBER Working Papers 18391, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
- Robert Lehmann & Klaus Wohlrabe, 2017.
"Boosting and regional economic forecasting: the case of Germany,"
Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
- Lehmann, Robert & Wohlrabe, Klaus, 2015. "The role of component-wise boosting for regional economic forecasting," MPRA Paper 68186, University Library of Munich, Germany, revised 03 Dec 2015.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Robert Lehmann & Felix Leiss & Simon Litsche & Stefan Sauer & Michael Weber & Annette Weichselberger & Klaus Wohlrabe, 2019. "Mit den ifo-Umfragen regionale Konjunktur verstehen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(09), pages 45-49, May.
- Robert Lehmann, 2023.
"The Forecasting Power of the ifo Business Survey,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
- Robert Lehmann, 2020. "The Forecasting Power of the ifo Business Survey," CESifo Working Paper Series 8291, CESifo.
- Magnus Kvåle Helliesen & Håvard Hungnes & Terje Skjerpen, 2022.
"Revisions in the Norwegian National Accounts: accuracy, unbiasedness and efficiency in preliminary figures,"
Empirical Economics, Springer, vol. 62(3), pages 1079-1121, March.
- Magnus Kvåle Helliesen & Håvard Hungnes & Terje Skjerpen, 2020. "Revisions in the Norwegian National Accounts. Accuracy, unbiasedness and efficiency in preliminary figures," Discussion Papers 924, Statistics Norway, Research Department.
- Holtemöller, Oliver & Kozyrev, Boris, 2024. "Forecasting economic activity using a neural network in uncertain times: Monte Carlo evidence and application to the German GDP," IWH Discussion Papers 6/2024, Halle Institute for Economic Research (IWH).
- Barbara Batóg & Jacek Batóg, 2021. "Regional Government Revenue Forecasting: Risk Factors of Investment Financing," Risks, MDPI, vol. 9(12), pages 1-15, November.
- Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
- Robert Lehmann, 2023. "READ-GER: Introducing German Real-Time Regional Accounts Data for Revision Analysis and Nowcasting," CESifo Working Paper Series 10315, CESifo.
- Holtemöller, Oliver & Kozyrev, Boris, 2023. "Forecasting Economic Activity with a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to German GDP," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277688, Verein für Socialpolitik / German Economic Association.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Dr. Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012.
"Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data),"
Research Memorandum
021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
More about this item
Keywords
Business surveys; East Germany; MIDAS model; Nowcasting;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:1:d:10.1007_s00181-019-01810-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.