IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

The performance of short-term forecasts of the German economy before and during the 2008/2009 recession

  • Drechsel, Katja
  • Scheufele, Rolf

The paper analyzes the forecasting performance of leading indicators for industrial production in Germany. We focus on single and pooled leading indicator models both before and during the financial crisis. Pairwise and joint significant tests are used to evaluate single indicator models, as well as forecast combination methods. In addition, we investigate the stability of forecasting models during the most recent financial crisis. We find that only a small number of single indicator models were performing well before the crisis. Pooling can substantially increase the reliability of leading indicator forecasts. During the crisis, the relative performances of many leading indicator models (e.g. using surveys, term and risk spreads) improved.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000793
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 28 (2012)
Issue (Month): 2 ()
Pages: 428-445

as
in new window

Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:428-445
Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ulrich Fritsche & Sabine Stephan, 2000. "Leading Indicators of German Business Cycles: An Assessment of Properties," Macroeconomics 0004005, EconWPA.
  2. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
  3. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, EconWPA.
  4. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2000. "How stable is the predictive power of the yield curve? evidence from Germany and the United States," Staff Reports 113, Federal Reserve Bank of New York.
  5. George Kapetanios & Vincent Labhard & Simon Price, 2006. "Forecasting using Bayesian and Information Theoretic Model Averaging: An Application to UK Inflation," Working Papers 566, Queen Mary University of London, School of Economics and Finance.
  6. Mark Gertler & Cara S. Lown, 2000. "The Information in the High Yield Bond Spread for the Business Cycle: Evidence and Some Implications," NBER Working Papers 7549, National Bureau of Economic Research, Inc.
  7. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-52, September.
  8. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  9. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, issue Sep, pages 419-440.
  10. James H. Stock & Mark W. Watson, 2003. "How did leading indicator forecasts perform during the 2001 recession?," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 71-90.
  11. David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
  12. John Y. Campbell, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, 02.
  13. Drechsel, Katja & Maurin, Laurent, 2008. "Flow of conjunctural information and forecast of euro area economic activity," Working Paper Series 0925, European Central Bank.
  14. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  15. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
  16. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  17. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  18. Dreger, Christian & Schumacher, Christian, 2002. "Estimating large-scale factor models for economic activity in Germany : do they outperform simpler models?," HWWA Discussion Papers 199, Hamburg Institute of International Economics (HWWA).
  19. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  20. Arturo Estrella & Gikas A. Hardouvelis, 1989. "The term structure as a predictor of real economic activity," Research Paper 8907, Federal Reserve Bank of New York.
  21. Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
  22. Donald W.K. Andrews, 2002. "End-of-Sample Instability Tests," Cowles Foundation Discussion Papers 1369, Cowles Foundation for Research in Economics, Yale University.
  23. Seitz, Franz & Brand, Claus & Reimers, Hans-Eggert, 2003. "Forecasting real GDP: what role for narrow money?," Working Paper Series 0254, European Central Bank.
  24. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  25. Joachim Benner & Carsten-Patrick Meier, 2004. "Prognosegüte alternativer Frühindikatoren für die Konjunktur in Deutschland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 224(6), pages 639-652, November.
  26. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  27. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
  28. Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
  29. Clements, Michael P. & Galvão, Ana Beatriz, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," The Warwick Economics Research Paper Series (TWERPS) 953, University of Warwick, Department of Economics.
  30. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
  31. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
  32. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  33. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  34. Felix Hüfner & Michael Schröder, 2002. "Prognosegehalt von ifo-Geschäftserwartungen und ZEW-Konjunkturerwartungen: Ein ökonometrischer Vergleich," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 222(3), pages 316-336.
  35. Christian Dreger & Christian Schumacher, 2005. "Out-of-sample Performance of Leading Indicators for the German Business Cycle: Single vs. Combined Forecasts," Journal of Business Cycle Measurement and Analysis, OECD Publishing,Centre for International Research on Economic Tendency Surveys, vol. 2005(1), pages 71-87.
  36. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  37. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  38. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  39. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  40. Konstantin A. Kholodilin & Boriss Siliverstovs, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 226(3), pages 234-259, May.
  41. Jonathan H. Wright, 2003. "Bayesian Model Averaging and exchange rate forecasts," International Finance Discussion Papers 779, Board of Governors of the Federal Reserve System (U.S.).
  42. Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
  43. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  44. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:428-445. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.