IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v30y2011i3p336-354.html
   My bibliography  Save this article

Flow of conjunctural information and forecast of euro area economic activity

Author

Listed:
  • Katja Drechsel
  • Laurent Maurin

Abstract

Combining forecasts, we analyse the role of information flow in computing short-term forecasts up to one quarter ahead for the euro area GDP and its main components. A dataset of 114 monthly indicators is set up and simple bridge equations are estimated. The individual forecasts are then pooled, using different weighting schemes. To take into consideration the release calendar of each indicator, six forecasts are compiled successively during the quarter. We found that the sequencing of information determines the weight allocated to each block of indicators, especially when the first month of hard data becomes available. This conclusion extends the findings of the recent literature. Moreover, when combining forecasts, two weighting schemes are found to outperform the equal weighting scheme in almost all cases. Compared to an AR forecast, these improve by more than 40% the forecast performance for GDP in the current and next quarter. Copyright (C) 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
  • Handle: RePEc:jof:jforec:v:30:y:2011:i:3:p:336-354
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1177
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gary Koop & Simon M. Potter, 2003. "Forecasting in large macroeconomic panels using Bayesian Model Averaging," Staff Reports 163, Federal Reserve Bank of New York.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    4. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
    5. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    6. Giovanni Caggiano & George Kapetanios & Vincent Labhard, 2011. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 736-752, December.
    7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    8. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
    9. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    10. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    11. Darracq Pariès, Matthieu & Maurin, Laurent, 2008. "The role of country-specific trade and survey data in forecasting euro area manufacturing production: perspective from large panel factor models," Working Paper Series 894, European Central Bank.
    12. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    13. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    14. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    15. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 622, European Central Bank.
    16. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    17. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    18. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    19. Massimiliano Marcellino, 2004. "Forecast Pooling for European Macroeconomic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 91-112, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann, 2016. "Wirtschaftswachstum und Konjunkturprognosen auf regionaler Ebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    2. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    3. Robert Lehmann & Klaus Wohlrabe, 2014. "Forecasting gross value-added at the regional level: are sectoral disaggregated predictions superior to direct ones?," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 34(1), pages 61-90, February.
    4. Laura D’Amato & Lorena Garegnani & Emilio Blanco, 2011. "Using the Flow of High Frequency Information for Short Term Forecasting of Economic Activity in Argentina," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(64), pages 7-33, October -.
    5. Schwarzmüller, Tim, 2015. "Model pooling and changes in the informational content of predictors: An empirical investigation for the euro area," Kiel Working Papers 1982, Kiel Institute for the World Economy (IfW).
    6. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    7. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
    8. Katja Drechsel & Rolf Scheufele, 2012. "The Financial Crisis from a Forecaster’s Perspective," Credit and Capital Markets, Credit and Capital Markets, vol. 45(1), pages 1-26.
    9. Marie Bessec, 2010. "Étalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Économie et Prévision, Programme National Persée, vol. 193(2), pages 77-99.
    10. Christian Grimme & Robert Lehmann & Marvin Noeller, 2018. "Forecasting Imports with Information from Abroad," CESifo Working Paper Series 7079, CESifo.
    11. Laura D'Amato & Lorena Garegnani & Emilio Blanco, 2016. "GDP Nowcasting: Assessing the Cyclical Conditions of the Argentine Economy," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(74), pages 7-26, December.
    12. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    13. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    14. Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
    15. Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
    16. Drechsel, Katja & Giesen, Sebastian & Lindner, Axel, 2014. "Outperforming IMF Forecasts by the Use of Leading Indicators," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100393, Verein für Socialpolitik / German Economic Association.
    17. Kitlinski, Tobias, 2015. "With or without you: Do financial data help to forecast industrial production?," Ruhr Economic Papers 558, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Laura D´Amato & Lorena Garegnani & Emilio Blanco, 2015. "GDP Nowcasting: Assessing business cycle conditions in Argentina," BCRA Working Paper Series 201569, Central Bank of Argentina, Economic Research Department.

    More about this item

    Keywords

    large dataset ; forecast pooling ; weighting scheme ; GDP components ; out‐of‐sample forecast performance ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:3:p:336-354. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.