IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting GDP at the regional level with many predictors

Listed author(s):
  • Lehmann, Robert
  • Wohlrabe, Klaus

In this paper, we assess the accuracy of macroeconomic forecasts at the regional level using a large data set at quarterly frequency. We forecast gross domestic product (GDP) for two German states (Free State of Saxony and Baden- Württemberg) and Eastern Germany. We overcome the problem of a ’data-poor environment’ at the sub-national level by complementing various regional indicators with more than 200 national and international indicators. We calculate single– indicator, multi–indicator, pooled and factor forecasts in a pseudo real–time setting. Our results show that we can significantly increase forecast accuracy compared to an autoregressive benchmark model, both for short and long term predictions. Furthermore, regional indicators play a crucial role for forecasting regional GDP.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://epub.ub.uni-muenchen.de/17104/1/Lehmann_Wohlrabe_2013.pdf
Download Restriction: no

Paper provided by University of Munich, Department of Economics in its series Discussion Papers in Economics with number 17104.

as
in new window

Length:
Date of creation: 14 Sep 2013
Handle: RePEc:lmu:muenec:17104
Contact details of provider: Postal:
Ludwigstr. 28, 80539 Munich, Germany

Phone: +49-(0)89-2180-3405
Fax: +49-(0)89-2180-3510
Web page: http://www.vwl.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  2. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  3. Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  4. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2003. "Leading Indicators for Euro-area Inflation and GDP Growth," Working Papers 235, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  5. Konstantin A. Kholodilin & Boriss Siliverstovs, 2005. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Discussion Papers of DIW Berlin 522, DIW Berlin, German Institute for Economic Research.
  6. Robert Lehmann & Wolf-Dietmar Speich & Roman Straube & Gerit Vogt, 2010. "Funktioniert der ifo Konjunkturtest auch in wirtschaftlichen Krisenzeiten? : eine Analyse der Zusammenhänge zwischen ifo Geschäftsklima und amtlichen Konjunkturdaten für Sachsen," ifo Dresden berichtet, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(03), pages 8-14, 06.
  7. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
  8. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
  9. Konstantin A. Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2007. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Discussion Papers of DIW Berlin 664, DIW Berlin, German Institute for Economic Research.
  10. Bandholz, Harm & Funke, Michael, 2003. "Die Konstruktion und Schätzung eines Konjunkturfrühindikators für Hamburg," Wirtschaftsdienst – Zeitschrift für Wirtschaftspolitik (1949 - 2007), ZBW – German National Library of Economics / Leibniz Information Centre for Economics, vol. 83(8), pages 540-548.
  11. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
  12. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
  13. Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
  14. Wenzel, Lars, 2013. "Forecasting regional growth in Germany: A panel approach using business survey data," HWWI Research Papers 133, Hamburg Institute of International Economics (HWWI).
  15. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  16. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil II: Die Zyklendatierung," Ifo Schnelldienst, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(14), pages 24-31, 07.
  17. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  18. Carstensen, Kai & Wohlrabe, Klaus & Ziegler, Christina, 2010. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Discussion Papers in Economics 11442, University of Munich, Department of Economics.
  19. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  20. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  21. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  22. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  23. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
  24. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, 04.
  25. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
  26. Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
  27. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," Ifo Schnelldienst, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
  28. Brautzsch, Hans-Ulrich & Ludwig, Udo, 2002. "Vierteljährliche Entstehungsrechnung des Bruttoinlandsprodukts für Ostdeutschland: Sektorale Bruttowertschöpfung," IWH Discussion Papers 164, Halle Institute for Economic Research (IWH).
  29. Katja Drechsel & Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
  30. Christian Dreger & Konstantin A. Kholodilin, 2007. "Prognosen der regionalen Konjunkturentwicklung," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 76(4), pages 47-55.
  31. Wolfgang Nierhaus, 2007. "Vierteljährliche volkswirtschaftliche Gesamtrechnungen für Sachsen mit Hilfe temporaler Disaggregation," ifo Dresden berichtet, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 14(04), pages 24-36, 08.
  32. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
  33. Joachim Ragnitz, 2009. "East Germany Today: Successes and Failures," CESifo DICE Report, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 7(4), pages 51-58, 01.
  34. Giorgio Bodo & Roberto Golinelli & Giuseppe Parigi, 2000. "Forecasting Industrial Production in the Euro Area," Temi di discussione (Economic working papers) 370, Bank of Italy, Economic Research and International Relations Area.
  35. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  36. Gerit Vogt, 2010. "VAR-Prognose-Pooling : ein Ansatz zur Verbesserung der Informationsgrundlage der ifo Dresden Konjunkturprognosen," ifo Dresden berichtet, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(02), pages 32-40, 04.
  37. Schumacher, Christian, 2009. "Factor forecasting using international targeted predictors: the case of German GDP," Discussion Paper Series 1: Economic Studies 2009,10, Deutsche Bundesbank, Research Centre.
  38. Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, SAGE Publishing, vol. 30(2), pages 100-119, April.
  39. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  40. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil I: Die Datenlage," Ifo Schnelldienst, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(13), pages 18-24, 07.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lmu:muenec:17104. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tamilla Benkelberg)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.