IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production

  • Carstensen, Kai
  • Wohlrabe, Klaus
  • Ziegler, Christina

In this paper we assess the information content of seven widely cited early indicators for the euro area with respect to forecasting area-wide industrial production. To this end, we use various tests that are designed to compare competing forecast models. In addition to the standard Diebold-Mariano test, we employ tests that account for specific problems typically encountered in forecast exercises. Specifically, we pay attention to nested model structures, we alleviate the problem of data snooping arising from multiple pairwise testing, and we analyze the structural stability in the relative forecast performance of one indicator compared to a benchmark model. Moreover, we consider loss functions that overweight forecast errors in booms and recessions to check whether a specific indicator that appears to be a good choice on average is also preferable in times of economic stress. We find that on average three indicators have superior forecast ability, namely the EuroCoin indicator, the OECD composite leading indicator, and the FAZ-Euro indicator published by the Frankfurter Allgemeine Zeitung. If one is interested in one-month forecasts only, the business climate indicator of the European Commission yields the smallest errors. However, the results are not completely invariant against the choice of the loss function. Moreover, rolling local tests reveal that the indicators are particularly useful in times of unusual changes in industrial production while the simple autoregressive benchmark is difficult to beat during time of average production growth.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://epub.ub.uni-muenchen.de/11442/1/indikatoren_carstensen_et_al.pdf
Download Restriction: no

Paper provided by University of Munich, Department of Economics in its series Discussion Papers in Economics with number 11442.

as
in new window

Length:
Date of creation: Mar 2010
Date of revision:
Handle: RePEc:lmu:muenec:11442
Contact details of provider: Postal: Ludwigstr. 28, 80539 Munich, Germany
Phone: +49-(0)89-2180-3405
Fax: +49-(0)89-2180-3510
Web page: http://www.vwl.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  2. Giovanni Caggiano & George Kapetanios & Vincent Labhard, 2011. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 736-752, December.
  3. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
  4. Allan Timmermann & Graham Elliott & Ivana Komunjer, 2004. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Econometric Society 2004 North American Summer Meetings 601, Econometric Society.
  5. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  6. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  7. Bodo, G. & Golinelli, R. & Parigi, G., 2000. "Forecasting Industrial Production in the Euro Area," Papers 370, Banca Italia - Servizio di Studi.
  8. Tatevik Sekhposyan & Barbara Rossi, 2008. "Has modelsí forecasting performance for US output growth and inflation changed over time, and when?," Working Papers 09-02, Duke University, Department of Economics.
  9. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  10. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 1-46 National Bureau of Economic Research, Inc.
  11. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
  12. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
  13. Ataman Ozyildirim & Brian Schaitkin & Victor Zarnowitz, 2010. "Business cycles in the euro area defined with coincident economic indicators and predicted with leading economic indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 6-28.
  14. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
  15. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  16. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  17. Costas Milas & Philip Rothman, 2007. "Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts," Working Paper Series 49-07, The Rimini Centre for Economic Analysis, revised Jul 2007.
  18. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  19. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
  20. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  21. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
  22. Fichtner, Ferdinand & Rüffer, Rasmus & Schnatz, Bernd, 2009. "Leading indicators in a globalised world," Working Paper Series 1125, European Central Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lmu:muenec:11442. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alexandra Frank)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.