IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/49_07.html
   My bibliography  Save this paper

Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts

Author

Listed:
  • Costas Milas

    () (Keele University, UK and The Rimini Centre for Economics Analysis, Italy)

  • Philip Rothman

    () (East Carolina University, USA)

Abstract

In this paper we use smooth transition vector error-correction models (STVECMs) in a simulated out-of-sample forecasting experiment for the unemployment rates of the four non-Euro G-7 countries, the U.S., U.K., Canada, and Japan. For the U.S., pooled forecasts constructed by taking the median value across the point forecasts generated by the linear and STVECM forecasts appear to perform better than the linear AR(p) benchmark more so during business cycle expansions. Such pooling also tends to lead to statistically significant forecast improvement for the U.K. ÒReality checksÓ of these results suggest that they do not stem from data snooping.

Suggested Citation

  • Costas Milas & Philip Rothman, 2007. "Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts," Working Paper series 49_07, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:49_07
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp49_07.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Balke, Nathan S & Fomby, Thomas B, 1997. "Threshold Cointegration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 627-645, August.
    2. Massimiliano Marcellino & Grayham E. Mizon & Hans-Martin Krolzig, 2002. "A Markov-switching vector equilibrium correction model of the UK labour market," Empirical Economics, Springer, vol. 27(2), pages 233-254.
    3. Soderlind, Paul & Vredin, Anders, 1996. "Applied Cointegration Analysis in the Mirror of Macroeconomic Theory," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 363-381, July-Aug..
    4. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    5. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    6. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    7. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    8. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    9. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    10. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    13. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    14. Skalin, Joakim & Ter svirta, Timo, 2002. "Modeling Asymmetries And Moving Equilibria In Unemployment Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 6(02), pages 202-241, April.
    15. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    16. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    17. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    18. Dick Dijk & Philip Hans Franses, 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 727-744, December.
    19. West, Kenneth D, 2001. "Tests for Forecast Encompassing When Forecasts Depend on Estimated Regression Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 29-33, January.
    20. Andrew Caplin & John Leahy, 1991. "State-Dependent Pricing and the Dynamics of Money and Output," The Quarterly Journal of Economics, Oxford University Press, vol. 106(3), pages 683-708.
    21. Valentina Corradi & Norman R. Swanson, 2007. "Nonparametric Bootstrap Procedures For Predictive Inference Based On Recursive Estimation Schemes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 67-109, February.
    22. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    23. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.
    24. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    25. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    26. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    27. Nickell, Stephen, 1998. "Unemployment: Questions and Some Answers," Economic Journal, Royal Economic Society, vol. 108(448), pages 802-816, May.
    28. Philip Rothman, 1998. "Forecasting Asymmetric Unemployment Rates," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
    29. D. A. Peel & A. E. H. Speight, 2000. "Threshold nonlinearities in unemployment rates: further evidence for the UK and G3 economies," Applied Economics, Taylor & Francis Journals, vol. 32(6), pages 705-715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ubilava, David & holt, Matt, 2013. "El Ni~no southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), June.
    2. Pär Österholm, 2010. "Improving Unemployment Rate Forecasts Using Survey Data," Finnish Economic Papers, Finnish Economic Association, vol. 23(1), pages 16-26, Spring.
    3. Ubilava, David & Helmers, Claes Gustav, 2011. "The ENSO Impact on Predicting World Cocoa Prices," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103528, Agricultural and Applied Economics Association.
    4. Elena Olmedo, 2014. "Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 183-197, February.
    5. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
    6. Andreas Karatahansopoulos & Georgios Sermpinis & Jason Laws & Christian Dunis, 2014. "Modelling and Trading the Greek Stock Market with Gene Expression and Genetic Programing Algorithms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 596-610, December.
    7. Ubilava, David & Helmers, C Gustav, 2012. "Forecasting ENSO with a smooth transition autoregressive model," MPRA Paper 36890, University Library of Munich, Germany.
    8. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
    9. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, September.
    10. M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
    11. Simionescu Mihaela, 2015. "Kalman Filter or VAR Models to Predict Unemployment Rate in Romania?," Naše gospodarstvo/Our economy, De Gruyter Open, vol. 61(3), pages 3-21, June.
    12. Barnichon, Regis & Garda, Paula, 2016. "Forecasting unemployment across countries: The ins and outs," European Economic Review, Elsevier, vol. 84(C), pages 165-183.
    13. Ullrich Heilemann & Herman Stekler, 2010. "Perspectives on Evaluating Macroeconomic Forecasts," Working Papers 2010-002, The George Washington University, Department of Economics, Research Program on Forecasting.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:49_07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.