IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1703.html
   My bibliography  Save this paper

Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy

Author

Listed:
  • van Dijk, D.J.C.
  • Franses, Ph.H.B.F.

Abstract

Nonlinear time series models have become fashionable tools to describe and forecast a variety of economic time series. A closer look at reported empirical studies, however, reveals that these models apparently fit well in-sample, but rarely show a substantial improvement in out-of-sample forecasts, at least over linear models. One of the many possible reasons for this finding is that inappropriate model selection criteria and forecast evaluation criteria are used. In this paper we therefore propose a novel criterion, which we believe does more justice to the very nature of nonlinear models. Simulations show that our criterion outperforms currently used criteria, in the sense that the true nonlinear model is more often found to perform better in out-of-sample forecasting than a benchmark linear model. An empirical illustration for US GDP emphasizes its relevance.

Suggested Citation

  • van Dijk, D.J.C. & Franses, Ph.H.B.F., 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Econometric Institute Research Papers EI 2003-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1703
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1703/feweco20030326134908.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giacomini, Raffaella, 2002. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests: Asymptotic and Bootstrap Methods," University of California at San Diego, Economics Working Paper Series qt59s2g5j5, Department of Economics, UC San Diego.
    2. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    5. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    6. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    7. Pesaran, M. Hashem & Potter, Simon M., 1997. "A floor and ceiling model of US output," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 661-695, May.
    8. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    9. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 47-75.
    12. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    13. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
    14. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    15. West, Kenneth D, 2001. "Tests for Forecast Encompassing When Forecasts Depend on Estimated Regression Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 29-33, January.
    16. Ramsey James B., 1996. "If Nonlinear Models Cannot Forecast, What Use Are They?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(2), pages 1-24, July.
    17. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
    18. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    19. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    20. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    2. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    3. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
    7. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    8. Clements, Michael P. & Galvao, Ana Beatriz, 2004. "A comparison of tests of nonlinear cointegration with application to the predictability of US interest rates using the term structure," International Journal of Forecasting, Elsevier, vol. 20(2), pages 219-236.
    9. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    10. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    11. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    12. Costas Milas & Ruthira Naraidoo, 2009. "Financial Market Conditions, Real Time, Nonlinearity and European Central Bank Monetary Policy: In-Sample and Out-of-Sample Assessment," Working Papers 200923, University of Pretoria, Department of Economics.
    13. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    14. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    15. Lucio Sarno, 2003. "Nonlinear Exchange Rate Models: A Selective Overview," Rivista di Politica Economica, SIPI Spa, vol. 93(4), pages 3-46, July-Augu.
    16. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
    17. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    18. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    19. Arora Siddharth & Little Max A. & McSharry Patrick E., 2013. "Nonlinear and nonparametric modeling approaches for probabilistic forecasting of the US gross national product," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 395-420, September.
    20. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.

    More about this item

    Keywords

    forecast evaluation; forecasting; model selection; nonlinearity;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.