IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Generalizing smooth transition autoregressions

  • Emilio Zanetti Chini

    ()

    (University of Rome "Tor Vergata")

We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with particular emphasis on two different LM-type tests for the null of symmetric adjustment towards a new regime and three diagnostic tests, whose power properties are explored via Monte Carlo experiments. Four classical real datasets illustrate the empirical properties of the GSTAR, jointly to a rolling forecasting experiment to evaluate its point and density forecasting performances. In all the cases, the dynamic asymmetry in the cycle is efficiently captured by the new model. The GSTAR beats AR and STAR competitors in point forecasting, while this superiority becomes less evident in density forecasting, specially if robust measures are considered.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_32.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2013-32.

as
in new window

Length: 53
Date of creation: 26 Sep 2013
Date of revision:
Handle: RePEc:aah:create:2013-32
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Seo, Byeongseon, 2003. "Nonlinear mean reversion in the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2243-2265.
  2. Lundbergh, Stefan & Terasvirta, Timo, 2006. "A time series model for an exchange rate in a target zone with applications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 579-609.
  3. Skalin, Joakim & Ter svirta, Timo, 2002. "Modeling Asymmetries And Moving Equilibria In Unemployment Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 6(02), pages 202-241, April.
  4. Rothman, Philip, 1988. "Further Evidence On The Asymmetric Behavior Of Unemployment Rates Over The Business Cycle," Working Papers 88-23, C.V. Starr Center for Applied Economics, New York University.
  5. Daniel E. Sichel, 1989. "Business cycle asymmetry: a deeper look," Working Paper Series / Economic Activity Section 93, Board of Governors of the Federal Reserve System (U.S.).
  6. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
  7. Sollis, Robert & Leybourne, Stephen & Newbold, Paul, 2002. "Tests for Symmetric and Asymmetric Nonlinear Mean Reversion in Real Exchange Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(3), pages 686-700, August.
  8. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  9. Michael J. Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous threshold autoregressive models: estimation, testing and forecasting," Working Papers 2003-024, Federal Reserve Bank of St. Louis.
  10. John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper Series 22-08, The Rimini Centre for Economic Analysis, revised Jan 2008.
  11. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  12. Proietti Tommaso, 1998. "Characterizing Asymmetries in Business Cycles Using Smooth-Transition Structural Time-Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(3), pages 1-18, October.
  13. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  14. Cristina Amado & Timo Teräsvirta, 2011. "Modelling Volatility by Variance Decomposition," CREATES Research Papers 2011-01, School of Economics and Management, University of Aarhus.
  15. Hansen, Bruce E, 1999. " Testing for Linearity," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 551-76, December.
  16. Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 04 Nov 2004.
  17. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
  18. Philip Rothman, . "Forecasting Asymmetric Unemployment Rates," Working Papers 9618, East Carolina University, Department of Economics.
  19. Eitrheim, Øyvind & Teräsvirta, Timo, 1995. "Testing the Adequacy of Smooth Transition Autoregressive Models," SSE/EFI Working Paper Series in Economics and Finance 56, Stockholm School of Economics.
  20. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  21. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
  22. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
  23. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
  24. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
  25. Lundbergh, Stefan & Teräsvirta, Timo & van Dijk, Dick, 2000. "Time-Varying Smooth Transition Autoregressive Models," SSE/EFI Working Paper Series in Economics and Finance 376, Stockholm School of Economics.
  26. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
  27. Seo, Byeongseon, 2003. "Nonlinear mean reversion in the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11-12), pages 2243-2265, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-32. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.