IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/22_08.html
   My bibliography  Save this paper

Optimal Prediction Pools

Author

Listed:
  • John Geweke

    () (University of Iowa, USA)

  • Gianni Amisano

    () (University of Brescia - Italy, European Central Bank and The Rimini Centre for Economic Analisys - Italy)

Abstract

A prediction model is any statement of a probability distribution for an outcome not yet observed. This study considers the properties of weighted linear combinations of n prediction models, or linear pools, evaluated using the conventional log predictive scoring rule. The log score is a concave function of the weights and, in general, an optimal linear combination will include several models with positive weights despite the fact that exactly one model has limiting posterior probability one. The paper derives several interesting formal results: for example, a prediction model with positive weight in a pool may have zero weight if some other models are deleted from that pool. The results are illustrated using S&P 500 returns with prediction models from the ARCH, stochastic volatility and Markov mixture families. In this example models that are clearly inferior by the usual scoring criteria have positive weights in optimal linear pools, and these pools substantially outperform their best components.

Suggested Citation

  • John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:22_08
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp22_08.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    2. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    3. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    4. Clemen, Robert T. & Murphy, Allan H. & Winkler, Robert L., 1995. "Screening probability forecasts: contrasts between choosing and combining," International Journal of Forecasting, Elsevier, vol. 11(1), pages 133-145, March.
    5. Emir Shuford & Arthur Albert & H. Edward Massengill, 1966. "Admissible probability measurement procedures," Psychometrika, Springer;The Psychometric Society, vol. 31(2), pages 125-145, June.
    6. Quandt, Richard E, 1974. "A Comparison of Methods for Testing Nonnested Hypotheses," The Review of Economics and Statistics, MIT Press, vol. 56(1), pages 92-99, February.
    7. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    8. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    9. Geweke, John, 2001. "Bayesian econometrics and forecasting," Journal of Econometrics, Elsevier, vol. 100(1), pages 11-15, January.
    10. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:22_08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.