IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Concepts and tools for nonlinear time series modelling

  • Amendola, Alessandra
  • Christian, Francq

Tools and approaches are provided for nonlinear time series modelling in econometrics. A wide range of topics is covered, including probabilistic properties, statistical inference and computational methods. The focus is on the applications but the ideas of the mathematical arguments are also provided. Techniques and concepts are illustrated by various examples, Monte Carlo experiments and a real application.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/15140/2/MPRA_paper_15140.pdf
File Function: original version
Download Restriction: no

File URL: https://mpra.ub.uni-muenchen.de/16668/1/MPRA_paper_16668.pdf
File Function: revised version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 15140.

as
in new window

Length:
Date of creation: 2009
Date of revision:
Handle: RePEc:pra:mprapa:15140
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  2. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  3. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-30, March.
  4. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
  5. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
  6. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
  7. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
  8. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, December.
  9. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-44, April.
  10. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  11. Peter F. Christoffersen & Francis X. Diebold, 1997. "How Relevant is Volatility Forecasting for Financial Risk Management?," Center for Financial Institutions Working Papers 97-45, Wharton School Center for Financial Institutions, University of Pennsylvania.
  12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  13. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  14. Christian Francq & Jean-Michel Zakoïan, 2000. "Stationarity of Multivariate Markov-Switching ARMA Models," Working Papers 2000-32, Centre de Recherche en Economie et Statistique.
  15. Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2002. "Testing For Zero Autocorrelation In The Presence Of Statistical Dependence," Econometric Theory, Cambridge University Press, vol. 18(03), pages 730-743, June.
  16. Sentana,E., 1995. "Quadratic Arch Models," Papers 9517, Centro de Estudios Monetarios Y Financieros-.
  17. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  18. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  19. Simon M. Potter, 1999. "Nonlinear time series modelling: an introduction," Staff Reports 87, Federal Reserve Bank of New York.
  20. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  21. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  22. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
  23. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
  24. Granger, Clive W J, 1993. "Strategies for Modelling Nonlinear Time-Series Relationships," The Economic Record, The Economic Society of Australia, vol. 69(206), pages 233-38, September.
  25. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  26. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  27. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  28. Amendola, Alessandra & Niglio, Marcella & Vitale, Cosimo, 2006. "The moments of SETARMA models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 625-633, March.
  29. De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
  30. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  31. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
  32. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
  33. Brown, Bryan W. & Mariano, Roberto S., 1989. "Predictors in Dynamic Nonlinear Models: Large-Sample Behavior," Econometric Theory, Cambridge University Press, vol. 5(03), pages 430-452, December.
  34. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826 Elsevier.
  35. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-35, April.
  36. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  37. Qiwei Yao & Howell Tong, 1994. "Quantifying the influence of initial values on nonlinear prediction," LSE Research Online Documents on Economics 19426, London School of Economics and Political Science, LSE Library.
  38. Li, C W & Li, W K, 1996. "On a Double-Threshold Autoregressive Heteroscedastic Time Series Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 253-74, May-June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15140. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.