IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Measuring output gap uncertainty

We propose a methodology for producing density forecasts for the output gap in real time using a large number of vector autoregessions in inflation and output gap measures. Density combination utilizes a linear mixture of experts framework to produce potentially non-Gaussian ensemble densities for the unobserved output gap. In our application, we show that data revisions alter substantially our probabilistic assessments of the output gap using a variety of output gap measures derived from univariate detrending filters. The resulting ensemble produces well-calibrated forecast densities for US inflation in real time, in contrast to those from simple univariate autoregressions which ignore the contribution of the output gap. Combining evidence from both linear trends and more flexible univariate detrending filters induces strong multi-modality in the predictive densities for the unobserved output gap. The peaks associated with these two detrending methodologies indicate output gaps of opposite sign for some bservations, reflecting the pervasive nature of model uncertainty in our US data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.rbnz.govt.nz/research_and_publications/discussion_papers/2009/dp09_15.pdf
Download Restriction: no

Paper provided by Reserve Bank of New Zealand in its series Reserve Bank of New Zealand Discussion Paper Series with number DP2009/15.

as
in new window

Length: 22 p
Date of creation: Dec 2009
Date of revision:
Handle: RePEc:nzb:nzbdps:2009/15
Contact details of provider: Postal: P.O. Box 2498, Wellington
Phone: 64 4 471-3767
Fax: 64 4 471-2270
Web page: http://www.rbnz.govt.nz
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  2. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  3. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  4. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  5. repec:nsr:niesrd:320 is not listed on IDEAS
  6. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
  7. Rudebusch, Glenn D & Svensson, Lars E O, 2000. "Eurosystem Monetary Targeting: Lessons from US Data," CEPR Discussion Papers 2522, C.E.P.R. Discussion Papers.
  8. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
  9. Wallis, Kenneth F., 2001. "Chi-squared tests of interval and density forecasts and the Bank of England's fan charts," Working Paper Series 0083, European Central Bank.
  10. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  11. Peter A. Morris, 1977. "Combining Expert Judgments: A Bayesian Approach," Management Science, INFORMS, vol. 23(7), pages 679-693, March.
  12. Thomas Laubach & John C. Williams, 2003. "Measuring the Natural Rate of Interest," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1063-1070, November.
  13. Athanasios Orphanides & Simon van Norden, 2003. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CIRANO Working Papers 2003s-01, CIRANO.
  14. Kevin Lee & Emi Mise & Kalvinder Shields & Tony Garratt, 2005. "Real time Representations of the Output Gap," Money Macro and Finance (MMF) Research Group Conference 2005 26, Money Macro and Finance Research Group.
  15. Athanasios Orphanides & Simon Van_Norden, 2000. "The Reliability of Output Gap Estimates in Real Time," Econometric Society World Congress 2000 Contributed Papers 0768, Econometric Society.
  16. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
  17. Lawrence J. Christiano & Terry J. Fitzgerald, 1999. "The Band Pass Filter," NBER Working Papers 7257, National Bureau of Economic Research, Inc.
    • Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, 05.
  18. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
  19. Peter A. Morris, 1974. "Decision Analysis Expert Use," Management Science, INFORMS, vol. 20(9), pages 1233-1241, May.
  20. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
  21. repec:nsr:niesrd:303 is not listed on IDEAS
  22. James Morley & Charles Nelson & Eric Zivot, 2003. "Why are Beveridge-Nelson and Unobserved-component decompositions of GDP so Different?," Working Papers UWEC-2002-18-P, University of Washington, Department of Economics.
  23. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
  24. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
  25. Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
  26. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
  27. Marcellino, Massimiliano & Musso, Alberto, 2010. "Real time estimates of the euro area output gap: reliability and forecasting performance," Working Paper Series 1157, European Central Bank.
  28. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
  29. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  30. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  31. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
  32. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
  33. repec:nsr:niesrd:249 is not listed on IDEAS
  34. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  35. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nzb:nzbdps:2009/15. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Reserve Bank of New Zealand Knowledge Centre)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.