IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Macro modelling with many models

  • Ida Wolden Bache

    (Norges Bank (Central Bank of Norway))

  • James Mitchell


    (National Institute of Economic and Social Research)

  • Francesco Ravazzolo

    (Norges Bank (Central Bank of Norway))

  • Shaun P. Vahey

    (Melbourne Business School)

We argue that the next generation of macro modellers at Inflation Targeting central banks should adapt a methodology from the weather forecasting literature known as `ensemble modelling'. In this approach, uncertainty about model specifications (e.g., initial conditions, parameters, and boundary conditions) is explicitly accounted for by constructing ensemble predictive densities from a large number of component models. The components allow the modeller to explore a wide range of uncertainties; and the resulting ensemble `integrates out' these uncertainties using time-varying weights on the components. We provide two examples of this modelling strategy: (i) forecasting inflation with a disaggregate ensemble; and (ii) forecasting inflation with an ensemble DSGE.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Norges Bank in its series Working Paper with number 2009/15.

in new window

Length: 26 pages
Date of creation: 17 Aug 2009
Date of revision:
Handle: RePEc:bno:worpap:2009_15
Note: First version:
Contact details of provider: Postal: Postboks 1179 Sentrum, 0107 Oslo
Phone: +47 22 31 60 00
Fax: +47 22 41 31 05
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Svensson, Lars E O & Williams, Noah, 2007. "Monetary Policy with Model Uncertainty: Distribution Forecast Targeting," CEPR Discussion Papers 6331, C.E.P.R. Discussion Papers.
  2. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
  3. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
  4. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  5. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
  6. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
  7. Smith, Julie K, 2004. "Weighted Median Inflation: Is This Core Inflation?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 253-63, April.
  8. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  9. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
  10. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  11. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
  12. Dr. James Mitchell, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," NIESR Discussion Papers 303, National Institute of Economic and Social Research.
  13. Andrea Brischetto & Anthony Richards, 2006. "The Performance of Trimmed Mean Measures of Underlying Inflation," RBA Research Discussion Papers rdp2006-10, Reserve Bank of Australia.
  14. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  15. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," NIESR Discussion Papers 342, National Institute of Economic and Social Research.
  16. Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.
  17. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  18. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  19. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
  20. Giordani, P. & Kohn, R. & van Dijk, D.J.C., 2005. "A unified approach to nonlinearity, structural change and outliers," Econometric Institute Research Papers EI 2005-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  21. Hugo Gerard & Kristoffer Nimark, 2008. "Combining multivariate density forecasts using predictive criteria," Economics Working Papers 1117, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2008.
  22. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," NIESR Discussion Papers 253, National Institute of Economic and Social Research.
  23. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
  24. Charles Goodhart, 2007. "Whatever became of the Monetary Aggregates?," FMG Special Papers sp172, Financial Markets Group.
  25. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
  26. Andersson, Michael K & Karlsson, Sune, 2007. "Bayesian forecast combination for VAR models," Working Paper Series 216, Sveriges Riksbank (Central Bank of Sweden).
  27. Juillard, Michel, 1996. "Dynare : a program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm," CEPREMAP Working Papers (Couverture Orange) 9602, CEPREMAP.
  28. Michael T. Kiley, 2008. "Estimating the common trend rate of inflation for consumer prices and consumer prices excluding food and energy prices," Finance and Economics Discussion Series 2008-38, Board of Governors of the Federal Reserve System (U.S.).
  29. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
  30. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  31. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
  32. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  33. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2009_15. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.