IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v24y2008i4p710-727.html
   My bibliography  Save this article

Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions

Author

Listed:
  • Panagiotelis, Anastasios
  • Smith, Michael

Abstract

Electricity spot prices exhibit strong time series properties, including substantial periodicity, both inter-day and intraday serial correlation, heavy tails and skewness. In this paper we capture these characteristics using a first order vector autoregressive model with exogenous effects and a skew t distributed disturbance. The vector is longitudinal, in that it comprises observations on the spot price at intervals during a day. A band two inverse scale matrix is employed for the disturbance, as well as a sparse autoregressive coefficient matrix. This corresponds to a parsimonious dependency structure that directly relates an observation to the two immediately prior, and the observation at the same time the previous day. We estimate the model using Markov Chain Monte Carlo, which allows for the evaluation of the complete predictive distribution of future spot prices. We apply the model to hourly Australian electricity spot prices observed over a three year period, with four different nested multivariate error distributions: skew t, symmetric t, skew normal and symmetric normal. The forecasting performance is judged over a 30Â day forecast trial using the continuous ranked probability score, which accounts for both predictive bias and sharpness.

Suggested Citation

  • Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
  • Handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:710-727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00101-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    2. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    3. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    4. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    5. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    6. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    7. Smith, Michael, 2000. "Modeling and Short-term Forecasting of New South Wales Electricity System Load," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 465-478, October.
    8. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    9. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    10. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    11. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    12. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    13. Baringhaus, L. & Franz, C., 2004. "On a new multivariate two-sample test," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 190-206, January.
    14. Michael Pitt & David Chan & Robert Kohn, 2006. "Efficient Bayesian inference for Gaussian copula regression models," Biometrika, Biometrika Trust, vol. 93(3), pages 537-554, September.
    15. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298.
    16. Fiebig, Denzil G. & Bartels, Robert & Aigner, Dennis J., 1991. "A random coefficient approach to the estimation of residential end-use load profiles," Journal of Econometrics, Elsevier, vol. 50(3), pages 297-327, December.
    17. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    18. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    19. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    C11 C13 C53 Vector Autoregression Longitudinal Model Parsimonious Covariance Asymmetry Continuous Ranked Probability Score Electricity Spot Price Forecasting;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:710-727. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.