IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting of daily electricity spot prices by incorporating intra-day relationships: Evidence form the UK power market

  • Katarzyna Maciejowska
  • Rafal Weron

We show that incorporating the intra-day relationships of electricity prices improves the accuracy of forecasts of daily electricity spot prices. We use half-hourly data from the UK power market to model the spot prices directly (via ARX and Vector ARX models) and indirectly (via factor models). The forecasting performance of five econometric models is evaluated and compared with that of a univariate model, which uses only (aggregated) daily data. The results indicate that there are forecast improvements from incorporating the disaggregated data, especially, when the forecast horizon exceeds one week. Additional improvements are achieved when the correlation structure of the intra-day relationships is explored.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_13_01.pdf
File Function: Final published version (IEEE Conference Proceedings, 10th International Conference on the European Energy Market (EEM'13), DOI 10.1109/EEM.2013.6607314)
Download Restriction: no

Paper provided by Hugo Steinhaus Center, Wroclaw University of Technology in its series HSC Research Reports with number HSC/13/01.

as
in new window

Length: 7 pages
Date of creation: 14 Feb 2013
Date of revision: 15 Apr 2013
Publication status: Published.
Handle: RePEc:wuu:wpaper:hsc1301
Contact details of provider: Postal: Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
Phone: +48-71-3203530
Fax: +48-71-3202654
Web page: http://prac.im.pwr.wroc.pl/~hugo
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  3. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
  4. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
  5. D'Agostino, Antonello & Bermingham, Colin, 2010. "Understanding and Forecasting Aggregate and Disaggregate Price Dynamics," Research Technical Papers 8/RT/10, Central Bank of Ireland.
  6. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
  7. Schlueter, Stephan, 2010. "A long-term/short-term model for daily electricity prices with dynamic volatility," Energy Economics, Elsevier, vol. 32(5), pages 1074-1081, September.
  8. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
  9. Nikita Perevalov & Philipp Maier, 2010. "On the Advantages of Disaggregated Data: Insights from Forecasting the U.S. Economy in a Data-Rich Environment," Working Papers 10-10, Bank of Canada.
  10. Huisman, R. & Huurman, C. & Mahieu, R.J., 2007. "Hourly Electricity Prices in Day-Ahead Markets," ERIM Report Series Research in Management ERS-2007-002-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  11. David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
  12. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
  13. Weron, Rafal, 2009. "Forecasting wholesale electricity prices: A review of time series models," MPRA Paper 21299, University Library of Munich, Germany.
  14. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
  15. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
  16. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
  17. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  18. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1301. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rafal Weron)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.