IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting of daily electricity prices with factor models: Utilizing intra-day and inter-zone relationships

  • Katarzyna Maciejowska
  • Rafal Weron

We show that incorporating the intra-day and inter-zone relationships of electricity prices in the Pennsylvania--New Jersey--Maryland (PJM) Interconnection improves the accuracy of short- and medium-term forecasts of average daily prices for a major PJM market hub -- the Dominion Hub in Virginia, U.S. The forecasting performance of four multivariate models calibrated to hourly and/or zonal day-ahead prices is evaluated and compared with that of a univariate model, which uses only average daily data for the Dominion Hub. The multivariate competitors include a restricted vector autoregressive model and three factor models with the common and idiosyncratic components estimated using principal components in a semiparametric setup. The results indicate that there are forecast improvements from incorporating the additional information, essentially for all considered forecast horizons ranging from one day to two months, but only when the correlation structure of prices across locations and hours is modeled using factor models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_13_11.pdf
File Function: Original version, 2013
Download Restriction: no

Paper provided by Hugo Steinhaus Center, Wroclaw University of Technology in its series HSC Research Reports with number HSC/13/11.

as
in new window

Length: 19 pages
Date of creation: 30 Dec 2013
Date of revision:
Handle: RePEc:wuu:wpaper:hsc1311
Contact details of provider: Postal: Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
Phone: +48-71-3203530
Fax: +48-71-3202654
Web page: http://prac.im.pwr.wroc.pl/~hugo
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  2. Huisman, R. & Huurman, C. & Mahieu, R.J., 2007. "Hourly Electricity Prices in Day-Ahead Markets," ERIM Report Series Research in Management ERS-2007-002-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  3. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
  4. D'Agostino, Antonello & Bermingham, Colin, 2010. "Understanding and Forecasting Aggregate and Disaggregate Price Dynamics," Research Technical Papers 8/RT/10, Central Bank of Ireland.
  5. Wolfgang Karl Härdle & Stefan Trück, 2010. "The dynamics of hourly electricity prices," SFB 649 Discussion Papers SFB649DP2010-013, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  6. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
  7. Liebl, Dominik, 2013. "Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective," MPRA Paper 50881, University Library of Munich, Germany.
  8. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  9. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
  10. repec:ner:tilbur:urn:nbn:nl:ui:12-3131737 is not listed on IDEAS
  11. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
  12. Schlueter, Stephan, 2010. "A long-term/short-term model for daily electricity prices with dynamic volatility," Energy Economics, Elsevier, vol. 32(5), pages 1074-1081, September.
  13. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
  14. Nikita Perevalov & Philipp Maier, 2010. "On the Advantages of Disaggregated Data: Insights from Forecasting the U.S. Economy in a Data-Rich Environment," Working Papers 10-10, Bank of Canada.
  15. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," MPRA Paper 10428, University Library of Munich, Germany.
  16. Katarzyna Maciejowska & Rafal Weron, 2013. "Forecasting of daily electricity spot prices by incorporating intra-day relationships: Evidence form the UK power market," HSC Research Reports HSC/13/01, Hugo Steinhaus Center, Wroclaw University of Technology, revised 15 Apr 2013.
  17. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
  18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  19. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
  20. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  21. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
  22. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Technology.
  23. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1311. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rafal Weron)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.