IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v129y2024ics0140988323007399.html
   My bibliography  Save this article

Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices

Author

Listed:
  • Madadkhani, Shiva
  • Ikonnikova, Svetlana

Abstract

The growing share of renewables, the retirement of coal generation, and the increasing significance (and price) of carbon emissions continue to reshape electricity market dynamics. Ongoing power sector transformations, along with recurrent energy price shocks, bring new challenges to electricity price prediction and projection. Adept at capturing nonlinear and time-varying dynamics of the power market, machine learning (ML) methods can significantly enhance modeling and projection capabilities. This paper leverages ML modeling to (1) analyze the day-ahead electricity price dynamics and (2) develop future price projections under varying market conditions. First, we offer a methodology for identifying and ranking the factors determining day-ahead power price behavior. Guided by the understanding of power price drivers, we then develop an ensemble ML model for high-resolution (i.e., for each day of the next year) electricity price projection. Hence, the first part of our analysis helps relate fundamental modeling approaches to ML studies, and the second part extends the existing literature, which is limited to high aggregation level (e.g., yearly basis) projections. High-resolution projections provide valuable insights into within-year price dynamics and help answer highly debated questions raised by the growing share of renewables and the current energy market turmoil. We demonstrate our methodology on the German power market, using data on 80 explanatory variables from 2015 to 2021. We identify the most critical power price drivers and develop an ML model to study the within-year impact of high fuel and carbon prices. Our findings indicate that the often-neglected interaction variables may significantly impact price projections and should be included in day-ahead electricity price modeling. We confirm the efficacy of our approach with a forecasting exercise based on day-ahead electricity prices in the first two quarters of 2022.

Suggested Citation

  • Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007399
    DOI: 10.1016/j.eneco.2023.107241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323007399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.