IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0906.4838.html
   My bibliography  Save this paper

Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices

Author

Listed:
  • Siddhivinayak Kulkarni
  • Imad Haidar

Abstract

This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the crude oil dynamic which help investors and individuals for risk managements.

Suggested Citation

  • Siddhivinayak Kulkarni & Imad Haidar, 2009. "Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices," Papers 0906.4838, arXiv.org.
  • Handle: RePEc:arx:papers:0906.4838
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0906.4838
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abosedra, Salah & Baghestani, Hamid, 2004. "On the predictive accuracy of crude oil futures prices," Energy Policy, Elsevier, vol. 32(12), pages 1389-1393, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reitz, Stefan & Rülke, Jan & Stadtmann, Georg, 2012. "Nonlinear Expectations in Speculative Markets," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62045, Verein für Socialpolitik / German Economic Association.
    2. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "Nonlinear expectations in speculative markets – Evidence from the ECB survey of professional forecasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1349-1363.
    3. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    4. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    5. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    6. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    7. Mamatzakis, E. & Remoundos, P., 2011. "Testing for adjustment costs and regime shifts in BRENT crude futures market," Economic Modelling, Elsevier, vol. 28(3), pages 1000-1008, May.
    8. Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    9. Kaufmann, Robert K. & Dees, Stephane & Gasteuil, Audrey & Mann, Michael, 2008. "Oil prices: The role of refinery utilization, futures markets and non-linearities," Energy Economics, Elsevier, vol. 30(5), pages 2609-2622, September.
    10. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    11. Markos Farag, Stephen Snudden, Greg Upton, 2024. "Can Futures Prices Predict the Real Price of Primary Commodities?," LCERPA Working Papers jc0145, Laurier Centre for Economic Research and Policy Analysis, revised 2024.
    12. Chul-Yong Lee & Sung-Yoon Huh, 2017. "Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors," Sustainability, MDPI, vol. 9(2), pages 1-15, January.
    13. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    14. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    15. Kaufmann, Robert K., 2023. "Energy price volatility affects decisions to purchase energy using capital: Motor vehicles," Energy Economics, Elsevier, vol. 126(C).
    16. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    17. Mamatzakis, E & Remoundos, P, 2010. "Threshold Cointegration in BRENT crude futures market," MPRA Paper 19978, University Library of Munich, Germany.
    18. E. Mamatzakis, 2014. "Revealing asymmetries in the loss function of WTI oil futures market," Empirical Economics, Springer, vol. 47(2), pages 411-426, September.
    19. Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    20. Onder Buberkoku, 2017. "Examining Energy Futures Market Efficiency Under Multiple Regime Shifts," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 61-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0906.4838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.