IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1206.html
   My bibliography  Save this paper

Robust estimation and forecasting of the long-term seasonal component of electricity spot prices

Author

Listed:
  • Jakub Nowotarski
  • Jakub Tomczyk
  • Rafal Weron

Abstract

When building stochastic models for electricity spot prices the problem of uttermost importance is the estimation and consequent forecasting of a component to deal with trends and seasonality in the data. While the short-term seasonal components (daily, weekly) are more regular and less important for valuation of typical power derivatives, the long-term seasonal components (LTSC; seasonal, annual) are much more difficult to tackle. Surprisingly, in many academic papers dealing with electricity spot price modeling the importance of the seasonal decomposition is neglected and the problem of forecasting it is not considered. With this paper we want to fill the gap and present a thorough study on estimation and forecasting of the LTSC of electricity spot prices. We consider a battery of models based on Fourier or wavelet decomposition combined with linear or exponential decay. We find that all considered wavelet-based models are significantly better in terms of forecasting spot prices up to a year ahead than all considered sine-based models. This result questions the validity and usefulness of stochastic models of spot electricity prices built on sinusoidal long-term seasonal components.

Suggested Citation

  • Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," HSC Research Reports HSC/12/06, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc1206
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_12_06.pdf
    File Function: Original version, 2012
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Haugom, Erik & Ullrich, Carl J., 2012. "Forecasting spot price volatility using the short-term forward curve," Energy Economics, Elsevier, vol. 34(6), pages 1826-1833.
    2. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    3. Max Stevenson, 2001. "Filtering and Forecasting Spot Electricity Prices in the Increasingly Deregulated Australian Electricity Market," Research Paper Series 63, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Huisman, Ronald & Kilic, Mehtap, 2012. "Electricity Futures Prices: Indirect Storability, Expectations, and Risk Premiums," Energy Economics, Elsevier, vol. 34(4), pages 892-898.
    5. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    6. Kanamura, Takashi & O[combining macron]hashi, Kazuhiko, 2008. "On transition probabilities of regime switching in electricity prices," Energy Economics, Elsevier, vol. 30(3), pages 1158-1172, May.
    7. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    8. Fryzlewicz, Piotr & van Bellegem, Sébastien & von Sachs, Rainer, 2003. "Forecasting non-stationary time series by wavelet process modelling," LSE Research Online Documents on Economics 25830, London School of Economics and Political Science, LSE Library.
    9. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Fichtner, Wolf, 2012. "Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices," Energy Economics, Elsevier, vol. 34(4), pages 1012-1032.
    10. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    11. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    12. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    13. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    14. Douglas, Stratford & Popova, Julia, 2008. "Storage and the electricity forward premium," Energy Economics, Elsevier, vol. 30(4), pages 1712-1727, July.
    15. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    16. H. Wong & Wai-Cheung Ip & Zhongjie Xie & Xueli Lui, 2003. "Modelling and forecasting by wavelets, and the application to exchange rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 537-553.
    17. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    18. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    19. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    20. Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Analysis of model implied volatility for jump diffusion models: Empirical evidence from the Nordpool market," Energy Economics, Elsevier, vol. 32(2), pages 302-312, March.
    21. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    22. Szymon Borak & Rafał Weron, 2008. "A semiparametric factor model for electricity forward curve dynamics," SFB 649 Discussion Papers SFB649DP2008-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    23. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    24. Bierbrauer, Michael & Menn, Christian & Rachev, Svetlozar T. & Truck, Stefan, 2007. "Spot and derivative pricing in the EEX power market," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3462-3485, November.
    25. Botterud, Audun & Kristiansen, Tarjei & Ilic, Marija D., 2010. "The relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 32(5), pages 967-978, September.
    26. De Jong Cyriel, 2006. "The Nature of Power Spikes: A Regime-Switch Approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-28, September.
    27. Schlueter, Stephan, 2010. "A long-term/short-term model for daily electricity prices with dynamic volatility," Energy Economics, Elsevier, vol. 32(5), pages 1074-1081, September.
    28. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    29. Redl, Christian & Haas, Reinhard & Huber, Claus & Böhm, Bernhard, 2009. "Price formation in electricity forward markets and the relevance of systematic forecast errors," Energy Economics, Elsevier, vol. 31(3), pages 356-364, May.
    30. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    31. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    32. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    33. repec:dau:papers:123456789/1433 is not listed on IDEAS
    34. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    35. Weron, Rafal & Janczura, Joanna, 2010. "Efficient estimation of Markov regime-switching models: An application to electricity wholesale market prices," MPRA Paper 26628, University Library of Munich, Germany.
    36. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    37. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    38. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
    39. Erlwein, Christina & Benth, Fred Espen & Mamon, Rogemar, 2010. "HMM filtering and parameter estimation of an electricity spot price model," Energy Economics, Elsevier, vol. 32(5), pages 1034-1043, September.
    40. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    41. Trueck, Stefan & Weron, Rafal & Wolff, Rodney, 2007. "Outlier Treatment and Robust Approaches for Modeling Electricity Spot Prices," MPRA Paper 4711, University Library of Munich, Germany.
    42. Ralf Becker & Stan Hurn & Vlad Pavlov, 2007. "Modelling Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 371-382, December.
    43. Schlüter, Stephan & Deuschle, Carola, 2010. "Using wavelets for time series forecasting: Does it pay off?," FAU Discussion Papers in Economics 04/2010, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    44. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, University Library of Munich, Germany.
    45. repec:spr:compst:v:69:y:2009:i:3:p:457-473 is not listed on IDEAS
    46. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    47. Stevenson Maxwell J & Moreira do Amaral Luiz Felipe & Peat Maurice, 2006. "Risk Management and the Role of Spot Price Predictions in the Australian Retail Electricity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Electricity spot price; Long-term seasonal component; Robust modeling; Forecasting; Wavelets;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rafal Weron). General contact details of provider: http://edirc.repec.org/data/hspwrpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.