IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0303007.html
   My bibliography  Save this paper

Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market

Author

Listed:
  • Rafal Weron

    (Hugo Steinhaus Center)

  • Ingve Simonsen

    (The Norwegian University of Science and Technology)

  • Piotr Wilman

    (Wroclaw University of Technology)

Abstract

In this paper we address the issue of modeling spot electricity prices. After analyzing factors leading to the unobservable in other financial or commodity markets price dynamics we propose a mean reverting jump diffusion model. We fit the model to data from the Nord Pool power exchange and find that it nearly duplicates the spot price's main characteristics. The model can thus be used for risk management and pricing derivatives written on the spot electricity price.

Suggested Citation

  • Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0303007
    Note: Type of Document - PDF; prepared on IBM PC - PC-TEX; pages: 10 ; figures: 3 included. Appeared in "The Application of Econophysics", H. Takayasu (ed.), Springer, Tokyo, 2004, pp. 182-191.
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/em/papers/0303/0303007.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401.
    3. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    4. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    6. Weron, R. & Kozłowska, B. & Nowicka-Zagrajek, J., 2001. "Modeling electricity loads in California: a continuous-time approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 344-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Serati & Matteo Manera & Michele Plotegher, 2008. "Modelling electricity prices: from the state of the art to a draft of a new proposal," LIUC Papers in Economics 210, Cattaneo University (LIUC).
    2. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    3. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    4. Rafal Weron, 2005. "Market price of risk implied by Asian-style electricity options," Econometrics 0502003, EconWPA.
    5. Hipòlit Torró & Julio Lucia, 2008. "Short-term electricity futures prices: Evidence on the time-varying risk premium," Working Papers. Serie EC 2008-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    6. Michael Bierbrauer & Stefan Trueck & Rafal Weron, 2005. "Modeling electricity prices with regime switching models," Econometrics 0502005, EconWPA.
    7. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
    8. repec:pal:assmgt:v:17:y:2016:i:5:d:10.1057_jam.2016.7 is not listed on IDEAS
    9. Simonsen, Ingve, 2005. "Volatility of power markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 10-20.
    10. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    11. Parail, V., 2010. "Properties of Electricity Prices and the Drivers of Interconnector Revenue," Cambridge Working Papers in Economics 1059, Faculty of Economics, University of Cambridge.
    12. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    13. Josep Perello & Miquel Montero & Luigi Palatella & Ingve Simonsen & Jaume Masoliver, 2006. "Entropy of the Nordic electricity market: anomalous scaling, spikes, and mean-reversion," Papers physics/0609066, arXiv.org.
    14. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    15. Martin Rypdal & Ola L{o}vsletten, 2012. "Modeling electricity spot prices using mean-reverting multifractal processes," Papers 1201.6137, arXiv.org.
    16. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.

    More about this item

    Keywords

    electricity price; mean reversion; wavelet transform; jump diffusion model;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0303007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.