IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00259225.html
   My bibliography  Save this paper

The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics

Author

Listed:
  • Abdou Kâ Diongue

    (UGB - Université Gaston Berger de Saint-Louis Sénégal, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, School of Economics and Finance - QUT - Queensland University of Technology [Brisbane])

  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris sciences et lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Electricity spot prices exhibit a number of typical features that are not found in most financial time series, such as complex seasonality patterns, persistence (hyperbolic decay of the autocorrelation function), mean reversion, spikes, asymmetric behavior and leptokurtosis. Efforts have been made worldwide to model the behaviour of the electricity's market price. In this paper, we propose a new approach dealing with the stationary k-factor Gegenbauer process with asymmetric Power GARCH noise under conditional Student-t distribution, which can take into account the previous features. We derive the stationary and invertible conditions as well as the δth-order moment of this model that we called GGk-APARCH model. Then we focus on the estimation parameters and provide the analytical from of the likelihood which permits to obtain consitent estimates. In order to characterize the properties of these estimates we perform a Monte Carlo experiment. Finally the previous approach is used to the model electricity spot prices coming from the Leipzig Power Exchange (LPX) in Germany, Powernext in France, Operadora del Mercado Espagñol de Electricidad (OMEL) in Spain and the Pennsylvania-New Jersey-Maryland (PJM) interconnection in United States. In terms of forecasting criteria we obtain very good results comparing with models using hederoscedastic asymmetric errors.

Suggested Citation

  • Abdou Kâ Diongue & Dominique Guegan, 2008. "The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00259225, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00259225
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00259225
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00259225/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    5. Abdou Kâ Diongue & Dominique Guegan, 2004. "Estimating parameters for a k-GIGARCH process," Post-Print halshs-00188531, HAL.
    6. Andrew A. Weiss, 1984. "Arma Models With Arch Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 129-143, March.
    7. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(3), pages 722-729, June.
    8. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    9. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    10. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    11. Yi-Ting Chen, 2002. "On the Robustness of Ljung-Box and McLeod-Li Q Tests: A Simulation Study," Economics Bulletin, AccessEcon, vol. 3(17), pages 1-10.
    12. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2007. "Deregulated Wholesale Electricity Prices in Italy: An Empirical Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(4), pages 415-432, November.
    13. Dominique Guegan & Abdou Kâ Diongue & Bertrand Vignal, 2004. "A k- factor GIGARCH process : estimation and application to electricity market spot prices," Post-Print halshs-00188533, HAL.
    14. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    15. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    16. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, University Library of Munich, Germany.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. repec:kap:iaecre:v:13:y:2007:i:4:p:415-432 is not listed on IDEAS
    19. Lester Hadsell, Achla Marathe and Hany A. Shawky, 2004. "Estimating the Volatility of Wholesale Electricity Spot Prices in the US," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 23-40.
    20. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
    21. Helen Higgs & Andrew C. Worthington, 2005. "Systematic Features of High-Frequency Volatility in Australian Electricity Markets: Intraday Patterns, Information Arrival and Calendar Effects," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 23-42.
    22. repec:ebl:ecbull:v:3:y:2002:i:17:p:1-10 is not listed on IDEAS
    23. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    24. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    25. Wilson, Jack W & Jones, Charles P & Lundstrum, Leonard L, 2001. "Stochastic Properties of Time-Averaged Financial Data: Explanation and Empirical Demonstration Using Monthly Stock Prices," The Financial Review, Eastern Finance Association, vol. 36(3), pages 175-190, August.
    26. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    27. Hassler, Uwe & Wolters, Jurgen, 1994. "On the power of unit root tests against fractional alternatives," Economics Letters, Elsevier, vol. 45(1), pages 1-5, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    2. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    3. Montero, José M. & García-Centeno, Maria C. & Fernández-Avilés, Gema, 2011. "Modelling the Volatility of the Spanish Wholesale Electricity Spot Market. Asymmetric GARCH Models vs. Threshold ARSV model/Modelización de la volatilidad en el mercado eléctrico español. Modelos GARC," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 29, pages 597-616, Agosto.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    2. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    3. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    4. Eskandar A. Tooma, 2003. "Modeling and Forecasting Egyptian Stock Market Volatility Before and After Price Limits," Working Papers 0310, Economic Research Forum, revised 04 Mar 2003.
    5. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    6. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, December.
    7. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    8. Kian Teng Kwek & Kuan Nee Koay, 2006. "Exchange rate volatility and volatility asymmetries: an application to finding a natural dollar currency," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 307-323.
    9. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
    10. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    11. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    12. Hickey, Emily & Loomis, David G. & Mohammadi, Hassan, 2012. "Forecasting hourly electricity prices using ARMAX–GARCH models: An application to MISO hubs," Energy Economics, Elsevier, vol. 34(1), pages 307-315.
    13. Erdogdu, Erkan, 2016. "Asymmetric volatility in European day-ahead power markets: A comparative microeconomic analysis," Energy Economics, Elsevier, vol. 56(C), pages 398-409.
    14. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    15. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    16. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    17. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    18. S. M. Abdullah & Salina Siddiqua & Muhammad Shahadat Hossain Siddiquee & Nazmul Hossain, 2017. "Modeling and forecasting exchange rate volatility in Bangladesh using GARCH models: a comparison based on normal and Student’s t-error distribution," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-19, December.
    19. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    20. Francesco Guidi, 2009. "Volatility and Long-Term Relations in Equity Markets: Empirical Evidence from Germany, Switzerland, and the UK," The IUP Journal of Financial Economics, IUP Publications, vol. 0(2), pages 7-39, June.

    More about this item

    Keywords

    A-PARCH; Asymmetric distribution function; electricity spot prices; Leptokurtosis; persistence; seasonality; GARMA; A-PARCH.; Distribution asymétrique; prix d'électricité; persistance; longue mémoire; A-P-ARCH; Gegenbauer.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00259225. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.