IDEAS home Printed from
   My bibliography  Save this article

Forecasting electricity spot market prices with a k-factor GIGARCH process


  • Diongue, Abdou Kâ
  • Guégan, Dominique
  • Vignal, Bertrand


In this article, we investigate conditional mean and conditional variance forecasts using a dynamic model following a k-factor GIGARCH process. Particularly, we provide the analytical expression of the conditional variance of the prediction error. We apply this method to the German electricity price market for the period August 15, 2000-December 31, 2002 and we test spot prices forecasts until one-month ahead forecast. The forecasting performance of the model is compared with a SARIMA-GARCH benchmark model using the year 2003 as the out-of-sample. The proposed model outperforms clearly the benchmark model. We conclude that the k-factor GIGARCH process is a suitable tool to forecast spot prices, using the classical RMSE criteria.

Suggested Citation

  • Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:4:p:505-510

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    2. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    3. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    4. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    5. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    6. Abdou Kâ Diongue & Dominique Guegan, 2008. "The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00259225, HAL.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Dominique Guegan & Abdou Kâ Diongue & Bertrand Vignal, 2004. "A k- factor GIGARCH process : estimation and application to electricity market spot prices," Post-Print halshs-00188533, HAL.
    9. Dominique Guegan, 2004. "How Can We Define the Long Memory Concept? An Econometric Survey," Econometric Society 2004 Australasian Meetings 361, Econometric Society.
    10. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2013. "Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities," Applied Energy, Elsevier, vol. 101(C), pages 363-375.
    2. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    3. Erdogdu, Erkan, 2010. "A paper on the unsettled question of Turkish electricity market: Balancing and settlement system (Part I)," Applied Energy, Elsevier, vol. 87(1), pages 251-258, January.
    4. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Lin, Whei-Min & Gow, Hong-Jey & Tsai, Ming-Tang, 2010. "An enhanced radial basis function network for short-term electricity price forecasting," Applied Energy, Elsevier, vol. 87(10), pages 3226-3234, October.
    7. repec:eee:appene:v:211:y:2018:i:c:p:890-903 is not listed on IDEAS
    8. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    9. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    10. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    11. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    12. Tryggvi Jónsson & Pierre Pinson & Henrik Madsen & Henrik Aalborg Nielsen, 2014. "Predictive Densities for Day-Ahead Electricity Prices Using Time-Adaptive Quantile Regression," Energies, MDPI, Open Access Journal, vol. 7(9), pages 1-25, August.
    13. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Rahimiyan, Morteza & Morales, Juan M. & Conejo, Antonio J., 2011. "Evaluating alternative offering strategies for wind producers in a pool," Applied Energy, Elsevier, vol. 88(12), pages 4918-4926.
    15. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    16. He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
    17. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
    18. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    19. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    20. Foued Saâdaoui, 2013. "The Price and Trading Volume Dynamics Relationship in the EEX Power Market: A Wavelet Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 47-69, June.
    21. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
    22. repec:hal:journl:halshs-00185370 is not listed on IDEAS
    23. repec:hal:journl:halshs-00259193 is not listed on IDEAS

    More about this item


    Conditional mean Conditional variance Electricity prices Forecast GIGARCH process;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:4:p:505-510. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.