IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/361.html
   My bibliography  Save this paper

How Can We Define the Long Memory Concept? An Econometric Survey

Author

Listed:
  • Dominique Guegan

Abstract

The possibility of confusing long memory behavior with structural changes need to specify what kind of long memory behavior is concerned in literature and applications. One attraction of long memory models is that they imply different long run predictions and effects of shocks to conventional macroeconomic approaches. On other hand, there is substantial evidence that long memory processes describe rather well financial data such as forward premiums, interest rate differentials, inflation rates and exchanges rates. Until now little attention pays to the possibility of confusing long memory and structural change. This is different from the problem encountered concerning the possible confusing between structural changes and unit roots which now widely appreciated, see for instance Sowell (1990), Stock (1994) and Granger and Ding (1996). Here we do not consider this point of view and will focus on possible interrelationships between long memory behavior and structural changes. Different classes of structural changes model which exhibit some long memory behavior have been proposed. This long memory behavior could be an illusion generated by occasional level shifts then inducing the observed persistence, while most shocks dissipate quickly. In contrast, all shocks are equally persistent in a long memory model. In this talk we discuss different aspects of long memory behavior and specify what kinds of parametric models follow them. We discuss the confusion which can arise when empirical autocorrelation function of a short memory process decreases in an hyperbolic way.

Suggested Citation

  • Dominique Guegan, 2004. "How Can We Define the Long Memory Concept? An Econometric Survey," Econometric Society 2004 Australasian Meetings 361, Econometric Society.
  • Handle: RePEc:ecm:ausm04:361
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip Bertram & Robinson Kruse & Philipp Sibbertsen, 2013. "Fractional integration versus level shifts: the case of realized asset correlations," Statistical Papers, Springer, vol. 54(4), pages 977-991, November.
    2. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    3. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    4. Dominique Guégan, 2009. "A Meta-Distribution for Non-Stationary Samples," CREATES Research Papers 2009-24, Department of Economics and Business Economics, Aarhus University.
    5. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    6. Bisaglia, Luisa & Gerolimetto, Margherita, 2008. "Forecasting long memory time series when occasional breaks occur," Economics Letters, Elsevier, vol. 98(3), pages 253-258, March.

    More about this item

    Keywords

    Chaos; Deconvolution; Long memory; Prediction; Wavelets;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:361. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.