IDEAS home Printed from https://ideas.repec.org/p/liu/liucec/210.html
   My bibliography  Save this paper

Modelling electricity prices: from the state of the art to a draft of a new proposal

Author

Abstract

In the last decades a liberalization of the electric market has started; prices are now determined on the basis of contracts on regular markets and their behaviour is mainly driven by usual supply and demand forces. A large body of literature has been developed in order to analyze and forecast their evolution: it includes works with different aims and methodologies depending on the temporal horizon being studied. In this survey we depict the actual state of the art focusing only on the recent papers oriented to the determination of trends in electricity spot prices and to the forecast of these prices in the short run. Structural methods of analysis, which result appropriate for the determination of forward and future values are left behind. Studies have been divided into three broad classes: Autoregressive models, Regime switching models, Volatility models. Six fundamental points arise: the peculiarities of electricity market, the complex statistical properties of prices, the lack of economic foundations of statistical models used for price analysis, the primacy of uniequational approaches, the crucial role played by demand and supply in prices determination, the lack of clearcut evidence in favour of a specific framework of analysis. To take into account the previous stylized issues, we propose the adoption of a methodological framework not yet used to model and forecast electricity prices: a time varying parameters Dynamic Factor Model (DFM). Such an eclectic approach, introduced in the late ‘70s for macroeconomic analysis, enables the identification of the unobservable dynamics of demand and supply driving electricity prices, the coexistence of short term and long term determinants, the creation of forecasts on future trends. Moreover, we have the possibility of simulating the impact that mismatches between demand and supply have over the price variable. This way it is possible to evaluate whether congestions in the network (eventually leading black out phenomena) trigger price reactions that can be considered as warning mechanisms.

Suggested Citation

  • Massimiliano Serati & Matteo Manera & Michele Plotegher, 2008. "Modelling electricity prices: from the state of the art to a draft of a new proposal," LIUC Papers in Economics 210, Cattaneo University (LIUC).
  • Handle: RePEc:liu:liucec:210
    as

    Download full text from publisher

    File URL: https://biblio.liuc.it/liucpap/pdf/210.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Monika Piazzesi & Glenn D. Rudebusch, 2005. "Modeling Bond Yields in Finance and Macroeconomics," American Economic Review, American Economic Association, vol. 95(2), pages 415-420, May.
    2. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    3. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    5. Guthrie, Graeme & Videbeck, Steen, 2007. "Electricity spot price dynamics: Beyond financial models," Energy Policy, Elsevier, vol. 35(11), pages 5614-5621, November.
    6. Guthrie, Graeme & Videbeck, Steen, 2002. "High Frequency Electricity Spot Price Dynamics: An Intra-day Markets Approach," Working Paper Series 3891, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    8. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    9. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    10. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    11. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    12. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    13. De Jong Cyriel, 2006. "The Nature of Power Spikes: A Regime-Switch Approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-28, September.
    14. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    15. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    16. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    17. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    19. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    20. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    21. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    22. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, University Library of Munich, Germany.
    23. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    24. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    25. Apostolos Serletis & Akbar Shahmoradi, 2007. "Measuring and Testing Natural Gas and Electricity Markets Volatility: Evidence from Alberta's Deregulated Markets," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 16, pages 205-220, World Scientific Publishing Co. Pte. Ltd..
    26. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    27. Bottazzi, G. & Sapio, S. & Secchi, A., 2005. "Some statistical investigations on the nature and dynamics of electricity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 54-61.
    28. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    29. repec:kap:iaecre:v:13:y:2007:i:4:p:415-432 is not listed on IDEAS
    30. Ryan A. Compton & Jose Ricardo da Costa & Silva, 2005. "Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching," Working Papers Series 97, Central Bank of Brazil, Research Department.
    31. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    32. Ángel León & Antonio Rubia, 2002. "Forecasting Time-Varying Covariance Matrices In Intradaily Electricity Spot Prices," Working Papers. Serie AD 2002-10, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    33. Marcellino, Massimiliano, 2006. "Leading Indicators," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 16, pages 879-960, Elsevier.
    34. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    35. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2006. "Deregulated Wholesale Electricity Prices in Italy," Working Papers 20060301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica, revised Apr 2006.
    36. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    37. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    38. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
    39. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    40. Worthington, Andrew & Kay-Spratley, Adam & Higgs, Helen, 2005. "Transmission of prices and price volatility in Australian electricity spot markets: a multivariate GARCH analysis," Energy Economics, Elsevier, vol. 27(2), pages 337-350, March.
    41. Weron, Rafal & Misiorek, Adam, 2006. "Point and interval forecasting of wholesale electricity prices: Evidence from the Nord Pool market," MPRA Paper 1363, University Library of Munich, Germany.
    42. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    43. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    44. Huisman, Ronald, 2008. "The influence of temperature on spike probability in day-ahead power prices," Energy Economics, Elsevier, vol. 30(5), pages 2697-2704, September.
    45. Michael Bierbrauer & Stefan Trueck & Rafal Weron, 2005. "Modeling electricity prices with regime switching models," Econometrics 0502005, University Library of Munich, Germany.
    46. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    47. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    48. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    49. Huisman, R., 2007. "The Influence of Temperature on Spike Probability in Day-Ahead Power Prices," ERIM Report Series Research in Management ERS-2007-039-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Pirino & Roberto Renò, 2010. "Electricity Prices: A Nonparametric Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 285-299.
    2. Serinaldi, Francesco, 2011. "Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape," Energy Economics, Elsevier, vol. 33(6), pages 1216-1226.
    3. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
    4. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    5. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    5. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    6. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    7. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    8. António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
    9. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic Factor Models," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 3, pages 25-40, Springer.
    10. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    11. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Working Papers ECARES 2008_012, ULB -- Universite Libre de Bruxelles.
    12. In Choi, 2011. "Efficient Estimation of Nonstationary Factor Models," Working Papers 1101, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Jun 2011.
    13. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    14. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    15. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    16. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    17. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    18. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    19. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    20. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.

    More about this item

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:liu:liucec:210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Ballestra (email available below). General contact details of provider: https://edirc.repec.org/data/liuccit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.